Forschungsverbund 'Leiser Verkehr'
Bereich 2000 'Lärmwirkungen'

Einzelvorhaben 2131:
Lärmbelästigung durch Straßen- und Schienenverkehr in
Abhängigkeit von der Tageszeit
(Förderkennzeichen 19U2062D)

Schlussbericht
Lärmbelästigung durch Straßen- und Schienenverkehr
in Abhängigkeit von der Tageszeit

Einzelaufgabe 2131 des Forschungsverbundes Leiser Verkehr – Lärmwirkung
gefördert durch das Bundesministerium für Bildung und Forschung
Förderkennzeichen: 19U2062B

Autoren:
Dirk Schreckenberg
Rainer Guski

Bearbeitung:

Sozialwissenschaftlicher Untersuchungsteil
Dipl.-Psych. Ute Felscher-Suhr ZEUS GmbH, 44799 Bochum
Dipl.-Psych. Inka Schmaus Ruhr-Universität Bochum, 44780 Bochum
Dipl.-Psych. Dirk Schreckenberg ZEUS GmbH, 44799 Bochum
Dr. Elena Sopelnikowa ZEUS GmbH, 44799 Bochum

Akustischer Untersuchungsteil
Dipl.-Ing. Manfred Liepert Möhler+Partner, 80336 München
Dipl.-Ing. Ulrich Möhler Möhler+Partner, 80336 München

Beratung:
Dr. Rudolf Schuemer ZEUS GmbH, 44799 Bochum

Dezember, 2004
Inhalt

Zusammenfassung... 4

Abstract.. 6

1. Einleitung ... 8

2. Erkenntnisse aus der Literatur .. 8

3. Forschungsdesign und Projektstruktur .. 11
 3.1 Untersuchungsdesign - Befragungsstudie ... 11
 3.2 Untersuchungsplan – experience-sampling-Studie .. 13
 3.3 Schallmessungen ... 13
 3.4 Auswertungskonzept ... 14

4. Durchführung der empirischen Untersuchung .. 17
 4.1 Gebietsauswahl.. 17
 4.2 Vorgehen – Akustik.. 20
 4.3 Durchführung der sozialwissenschaftlichen Erhebungen.. 23
 4.3.1 Konstruktion des Fragebogens für die Hauptbefragung .. 23
 4.3.2 Erhebungsinstrumente der experience-sampling-Studie .. 26
 4.3.3 Organisatorische Vorbereitung der sozialwissenschaftlichen Erhebungen.................. 27
 4.4 Durchführung der Hauptbefragung ... 28
 4.5 Durchführung der experience-sampling-Studie .. 29
 4.6 Untersuchungsablauf im Überblick... 31

5. Ergebnisse .. 32
 5.1 Beschreibung der Stichprobe... 32
 5.1.1 Beschreibung der Gesamtstichprobe der interviewten Personen.............................. 32
 5.1.2 Beschreibung der Stichprobe der experience-sampling-Studie.................................. 36
 5.2 Ergebnisse der akustischen Erhebungen ... 37
 5.2.1 Pegel-Probanden-Verteilungen.. 37
 5.2.2 Tageszeitliche Verläufe.. 41
 5.2.3 Ergebnisse von Korrelationsberechnungen zur Beziehung zwischen Pegel und
 Reaktionen... 44
 5.3 Ergebnisse der Hauptbefragungsstudie ... 51
| A.4.5 | Bönen (Schienengebiet) | 101 |
| A.4.6 | Hamm-Westtünnen (Schienengebiet) | 102 |
| A5 | Probandenanschreiben (Muster) | 103 |
| A6 | Interview-Fragebogen für Straßengebiete - Version A | 106 |
| A7 | Interview-Fragebogen für Straßengebiete - Version B | 114 |
| A8 | Interview-Fragebogen für Schienengebiete - Version C | 123 |
| A9 | Interview-Fragebogen für Schienengebiete - Version D | 132 |
| A10 | Elektronischer PDA-Kurzfragebogen | 141 |
Zusammenfassung

Die Ergebnisse zeigen, dass beim Straßenverkehr die Tageszeiten mit höherer Lärmbelästigung bereits am Nachmittag, insbesondere ab ca. 16 Uhr beginnen und gegen 19 Uhr wieder abklingen. Die Teilnehmer der experience-sampling-Studie aus den Straßengebieten berichteten für diesen Zeitraum erhöhter Lärmbelästigung überwiegend die Tätigkeiten 'Konzentration/Lesen', 'Unterhalten/Telefonieren' und 'TV sehen, Radio hören'. Gleichzeitig wird für diesen Zeitraum die höchste Belästigung bei Mahlzeiten berichtet. Dabei kann vermutet werden, dass neben der...
eigentlichen Nahrungsaufnahme kommuniziert, fernsehen bzw. Radio/Musik gehört oder gelesen wird.

In den Schienenverkehrslärmgebieten liegt eine erhöhte Lärmbelästigung in der Abendzeit zwischen 18 und 22 Uhr vor. In diesem Zeitraum ist ein leichter Anstieg des Schienenverkehrs-Geräuschpegels (L_{Aeq}, L_{1}) bei gleichzeitigem Rückgang des Hintergrundgeräuschpegels (L_{95}) festzustellen. Die durch den Schienenverkehr verursachte Geräuschbelastung tritt also am Abend deutlicher hervor, und dies in einem Zeitraum, in dem nach Angaben der Teilnehmer der exeperience-sampling-Studie überwiegend passive Kommunikation (Fernsehen, Radio/Musik hören) stattfindet. Es ist plausibel, dass hierbei als Einzelereignisse gut wahrnehmbare Geräusche durch den Bahnverkehr besonders stören.

Um zu prüfen, ob der im L_{den} verankerte Abendzuschlag (5 dB) bezogen auf die Lärmbelästigung durch Schienen- und Straßenverkehrslärm gerechtfertigt ist, wurde getrennt für beide Lärmquellen die Differenz zwischen der Lärmbelästigung tagsüber (6-18 Uhr) und der Lärmbelästigung abends (18-22 Uhr) ausgedrückt in Pegelheiten bestimmt (ΔL-Schätzung). Hierzu wurden lineare Regressionsmodelle mit der Lärmbelästigung (Schiene/Straße) als abhängige Variable und dem Mittelungspegel L_{Aeq} als unabhängige Variable für die Tageszeiträume tags und abends bestimmt. Der ΔL-Wert beinhaltet dabei die Differenz ausgedrückt in dB(A) mit der tagsüber der Straßen- bzw. Schienenverkehrslärm lauter sein muss als abends, um das gleiche Ausmaß an Belästigung zu erzielen (Abendmalus). Diese ΔL-Schätzungen sind für verschiedene Pegelbereiche – 50, 60 und 70 dB(A) – vorgenommen worden. Die im Vergleich zur Belästigung in den vorausgehenden Tagesstunden höhere Beeinträchtigung in der Abendzeit (18-22 Uhr) entspricht beim Straßenverkehrslärm einem Abendmalus in einem Pegeläquivalent von 1-5 dB und beim Schienenverkehrslärm einem Abendmalus von 9-14 dB (in beiden Fällen je nach absolutem Mittelungspegelbereich im Range von 50 und 70 dB(A)). Die Ergebnisse bestätigen – deutlicher noch für den Schienen- als für den Straßenverkehrslärm – im Hinblick auf die Belästigungswirkung grundsätzlich die Angemessenheit eines Zuschlags für die Abendzeit, wie sie im Beurteilungspiegel L_{den} vorgesehen ist. Dies gilt unabhängig davon, ob die Abendzeit von 18-22 Uhr, wie es in Deutschland Praxis ist, oder gemäß des Vorschlags in der EU-Umgebungslärmrichtlinie von 19-23 Uhr definiert ist.

Grundsätzlich werden die Interviewdaten zur stündlichen Lärmbelästigung durch die zeit- und ereignisnähere Erhebung mittels PDA in der ergänzenden experience-sampling-Studie bestätigt. Zwar sind die mittels PDA erhobenen Lärmbelästigungsurteile im Tagesverlauf stärker schwankend und stehen in etwas engerer Beziehung zum Pegelverlauf als die im Interview erhobene Lärmbelästigung. Insgesamt aber sind die mit beiden Erhebungsmethoden erhobenen Urteile im Niveau und Verlauf vergleichbar.
Abstract

One of the most prominent effects of noise is the disturbance of human activities (i.e. communicating, relaxing, working, sleeping). Due to the fact that activities vary diurnally it is plausible to assume that peoples’ responses to noise differ depending on the times of day. Acoustical parameters of noise exposure including weightings for different times of day base on this hypothesis. In particular the European parameter L_{den} includes penalties to noise for the evening (5 dB) and night (10 dB) relative to the rest of the day indicating that there is a need for higher protection at these times of day. The aim of the study is to provide empirical data of dose-response relationships for different times of day. The time slice investigated includes the hours from 5am to 11pm.

1110 residents from four areas with dominant road traffic noise (683 subjects) and from two areas with dominant railway noise (427 subjects) have been asked in a face-to-face interview for contentment with house and living environment, noise reactions (annoyance, disturbances, coping behaviour), possible non-acoustic variables influencing the noise annoyance (i.e. noise sensitivity, misfeasance), features of house/living conditions and demographic variables. 131 persons of the total sample took part in an additional study (experience-sampling study) in which the hourly noise annoyance was measured for three consecutive days using a handheld computer. For each subject individual source-specific immission noise level (L_{Aeq}, L_1, L_{95}) for each hour of the day has been calculated.

The results show that for equal noise level class (L_{Aeq} per hour, class range: 2.5 dB) there is higher annoyance due to road traffic noise in the late afternoon/evening from 4pm to 7pm. For railway noise higher annoyance is reported in the evening from 6pm to 10am. The reported differences in noise annoyance depending on the times of day are higher with increasing noise level.

To proof whether the noise penalty for the evening included in the L_{den} is justified with regard to the effects of road and railway traffic noise on annoyance, for each of the two noise sources the differences in noise annoyance between daytime (6am-6pm) and evening (6pm-10pm) have been estimated expressed in units of the noise level (ΔL-estimation method). For this linear regression models with noise annoyance (road/railway) as depending variable and noise level (L_{Aeq}) as independent variable have been calculated for daytime and the evening. The ΔL comprises the size of difference – in dB(A) – by which noise at daytime must be louder than in the evening to reach the same amount of annoyance (evening malus). Such estimates of ΔL have been conducted for different noise levels. For road traffic noise ΔL is in a range of 1 dB at 50 dB(A) to 5 dB at 70 dB(A). For railway noise the evening penalty is in the range of 9 dB at 50 dB(A) to 14 dB at 70 dB(A).

The results of the experience-sampling study largely validate the interview data with regard to the assessment of hourly noise annoyance. The hourly noise annoyance assessed by means of a handheld computer in the experience-sampling study varies more according to variations in noise level $L_{Aeq,1h}$ than does the hourly annoyance assessed in the retrospective interview. The annoyance curve based on interview data is smoother. This is plausible because it can be assumed that retrospective judgements in the interview integrate more general experiences according to specific times of day than do...
judgements related to an hour ago (assessment with PDA). But altogether the annoyance judgements assessed with both methods are on the same level.
1. Einleitung

2. Erkenntnisse aus der Literatur

¹ Entsprechende Analysen der Daten aus anderen Untersuchungen ergaben allerdings teils abweichende Ergebnisse. So unterschieden sich die auf den Tag oder auf die Nacht bezogenen Pegel-Belästigungs-Beziehungen in der IF-Studie.

In der Schweizer Lärmstudie 2000 (Wirth, 2004; Wirth et al. 2002) wurden von den befragten Anwohnern des Züricher Flughafens vor allem die Nachtrandsstunden (5-6 Uhr; 22-0.30 Uhr) als Tageszeiten genannt, zu denen der Fluglärm als nicht zumutbar bezeichnet wurde. Der Verteilung des Anteils hoch Belästigter über den Tag ist in diese Studie dreigipfelig, mit erhöhtem Anteil in den Morgenstunden (6-9 Uhr), mittags (12-14 Uhr), und vor allem abends ab 21 Uhr, während die Flugbewegungsspitzen zeitlich zwischen diesen drei Tageszeitfenstern liegen. In einer repräsentativen Umfrage zur Lärmbelästigung der Bevölkerung in Baden-Württemberg (Schreckenberg et al., 1999) wurden als besonders sensible Tageszeiten von den Betroffenen der Abend (19-22 Uhr) und der Morgen (6-9 Uhr) genannt. In einer neueren baden-württembergischen Befragungsstudie mit dem gleichen Erhebungsinstrument (LfU, 2004) wurden als sensible Tageszeiten im Bezug auf Straßen- und Flugverkehrslärm sowie Umweltlärm insgesamt der Morgen zwischen 7 und 9 Uhr und der Nachmittag und frühe Abend (15-19 Uhr) identifiziert. Dagegen nannten die vornehmlich durch Schienenverkehrslärm Betroffenen in dieser Studie die Abend- und Nachtzeit als Tageszeiträume, in denen der Lärm dieser Quelle sich besonders bemerkbar macht und entsprechend belästigt. Die Interpretation der baden-württembergischen Umfragedaten aus 1999 und 2004 ist allerdings dadurch erschwert, dass keine Angaben über die akustische Belastung vorliegen. Felscher-Suhr et al. (1995, 1996) fanden in einer Studie zur Erfassung von Alltagstätigkeiten und deren Störungen durch Umweltlärm (Straßenverkehrslärm, Fluglärm) als besonders sensible Tageszeiten bei den hoch belasteten Düsseldorfer Flughafenanrainern: werktags zwischen 11.00 Uhr und 12.00 Uhr sowie gegen 16.00 Uhr und an Wochenenden zwischen 11.00 Uhr und 12.00 Uhr sowie gegen 15.00 Uhr und gegen 19.00 Uhr. Bei den weniger stark durch Fluglärm belasteten Anwohnern war die Gestörtheit erwartungsgemäß geringer als bei den hoch belasteten Personen. Zu den sensibleren Tageszeiten zählen bei dieser Gruppe: werktags zwischen 17.00 und 19.00 Uhr und an Wochenenden gegen 8.00 Uhr sowie gegen 17.00 Uhr.

Mit einigen Beurteilungspegeln wird versucht, die für verschiedene Tageszeiten unterschiedliche Empfindlichkeit durch Zuschläge für bestimmte Tages-/Nachtzeiten zu berücksichtigen. So sieht der insbesondere im nordamerikanischen Raum verwendete L_{dn} (day-night level) für die Nacht einen Zuschlag von 10 dB(A), der europäische L_{den} (day-evening-night level) darüber hinaus für die Abendstunden einen Zuschlag von 5 dB(A) vor. Diese unterschiedlichen Gewichtungen der Tageszeit entsprechen jedoch sowohl bezüglich der exakten Zeiten als auch der Höhe der Zuschläge eher normativen Setzungen als empirischen Forschungsergebnissen.

eine erhebliche Bedeutung zu. Das hier beschriebene Vorhaben zielt darauf ab, für innerstädtischen Straßenverkehr sowie für Schienenverkehr, mögliche Unterschiede in der Belästigung je nach Tageszeit genauer zu erfassen und damit zur Bestimmung angemessener Ab-/Zuschläge beizutragen.

3. Forschungsdesign und Projektstruktur

3.1 Untersuchungsdesign - Befragungsstudie

In vorliegender Untersuchung sollen die folgenden Hypothesen geprüft werden:

- **Hypothese 1:** Bei gleicher Schienenverkehrs-Geräuschbelastung (d.h. bei gleichem stündlichem Mittelungspegel) wird Bahnlärm zu verschiedenen Tageszeiten unterschiedliche belästigend und störend empfunden. Aufgrund der Ergebnisse bisheriger Studien wird angenommen, dass insbesondere abends die Belästigung bei gleicher Schienenverkehrs-Geräuschbelastung höher ist als in der davor liegenden Tageszeit.

- **Hypothese 2:** Bei gleichem Straßenverkehrs-Geräuschbelastung (d.h. bei gleichem stündlichem Mittelungspegel) wird Straßenlärm zu verschiedenen Tageszeiten unterschiedliche belästigend und störend empfunden. Aufgrund der Ergebnisse bisheriger Studien wird angenommen, dass insbesondere abends die Belästigung bei gleicher Straßenverkehrs-Geräuschbelastung höher ist als in der davor liegenden Tageszeit.

Die Überprüfung der Hypothesen soll im Rahmen einer als "quasi-experimentelle Feldstudie" (vgl. Campbell & Stanley 1966; Cook & Campbell 1979 oder Bortz & Döring, 1995) konzipierten Untersuchung vorgenommen werden: Die Variation der unabhängigen Variablen (Geräuschbelastung und zeitliche Belastungsstruktur) erfolgt durch Suche relevant erscheinender Bedingungen "im Feld" bzw. durch die Auswahl von Untersuchungsgebieten, in denen die gewünschten Ausprägungen der unabhängigen Variablen realisiert sind; die Zuordnung der Probanden zu den Untersuchungsbedingungen erfolgt nicht zufällig - vielmehr wird die Erhebung an Betroffenen durchgeführt, die in den Untersuchungsgebieten unter den jeweiligen Bedingungen wohnen. Bei den
Betroffenen werden in ihrer „natürlichen“ Wohnungsumgebung Belästigungs- und Gestörtheitsreaktionen als abhängige Variablen mittels Fragebögen erhoben.

Die Untersuchungsgebiete sollen so ausgewählt werden, dass sie eine Variation sowohl hinsichtlich der quellenspezifischen Belastung (etwa des Wohneinheit-bezogenen Immissions-Mittelungspegels, \(\text{L}_{\text{Aeq}} \) für Schiene bzw. Straße) als auch hinsichtlich der zeitlichen Belastungsstruktur beinhalten.

Die Variation in der zeitlichen Belastungsstruktur soll so erfolgen, dass je zu Hälfte Untersuchungsgebiete ausgewählt werden, in denen ab dem Spätnachmittag/Abend die Geräuschbelastung abnimmt (Gebietstyp 1 bzw. 3 bezogen auf Gebiete mit dominierendem Straßenbzw. Schienenverkehrslärm) und in denen die Verkehrsbelastung tagsüber, abends und in der Nacht annähernd gleich bleibt (Typ 2 [Straße] bzw. 4 [Schiene]).

Bei Berücksichtigung der genannten Faktoren und bei einer zumindest zweistufigen Pegelabstufung pro Gebiet ergibt sich folgender Erhebungsplan:

Tabelle 3-1: Geplantes Untersuchungsdesign \(n=1200 \)

<table>
<thead>
<tr>
<th>Typ</th>
<th>Straße</th>
<th>Schiene</th>
</tr>
</thead>
<tbody>
<tr>
<td>abends Pegelabfall</td>
<td>Gebiet 1</td>
<td>Gebiet 2</td>
</tr>
<tr>
<td></td>
<td>Typ 1</td>
<td>Typ 3</td>
</tr>
<tr>
<td>gleichmäßiger Pegelverlauf</td>
<td>Gebiet 3</td>
<td>Gebiet 4</td>
</tr>
<tr>
<td></td>
<td>Typ 2</td>
<td>Typ 4</td>
</tr>
</tbody>
</table>

Bei Verwendung dieses Designs ist ein Stichprobenumfang von ca. 300 Probanden pro Pegelverlaufstyp bzw. 150 Probanden pro Gebiet erforderlich um Mittelwertsunterschiede bei noch vertretbarem alpha- und beta-Risiko sichern zu können (\(\alpha=0.05 \) und \(\beta=0.2 \)). Diese Berechnungen wurden unter der Annahme einer Streuung der Urteile von \(s=1 \) (5-stufige Belästigungsskala entsprechend der ICBEN-Konvention; vgl. Felscher-Suhr et al. 1999, 2000; Fields

3.2 Untersuchungsplan – experience-sampling-Studie

In den einzelnen Untersuchungsgebieten sollen die befragten Personen am Ende des Interviews nach ihrer Teilnahmebereitschaft an einer vertiefenden Untersuchung – der experience-sampling-Studie – gefragt werden. Im Rahmen dieser zweiten Teilstudie sollen die Teilnehmer mit Hilfe eines Handheld-Computers bzw. PDA an drei aufeinander folgenden Tagen ihre stündliche Belästigung durch Schienen- bzw. Straßenverkehrslärm angeben. Es ist vorgesehen, mit ca. 20 Personen aus jedem Gebiet (bei sechs Untersuchungsgebieten mit insgesamt 120 Personen) die experience-sampling-Studie durchzuführen.

3.3 Schallmessungen

Ziel der Schallmessungen

Ziel der Messungen ist es, für alle Probanden der Befragungsstudie und die Probanden der experience-sampling-Studie abhängig von der Tageszeit die quellspezifische akustische Belastungssituation zu erfassen. Für die Probanden der experience-sampling-Studie sollen zudem die Schallpegel zeitsynchron zu den Erhebungen der Belästigung durch Handheld-Computer erhoben werden.

Für die Stichprobe im Rahmen der experience-sampling-Studie sollen die Messungen zeitgleich mit den Erhebungen der aktuellen (stündlichen) Belästigung mit stündlichen Mittelungen der Messwerte durchgeführt werden.

Die Schallmessungen in den Untersuchungsgebieten sollen ein möglichst realistisches Abbild des stündlichen Verlaufs der Lärmbelastung für jeden einzelnen Probanden liefern. Die Lärmbelastung soll dabei auf den Geräuschpegel außen vor dem Fenster beschränkt bleiben, eine Beschreibung des
Lärmpegels innerhalb der Wohnung erfolgt nicht. Da die Lärmbelastung – im Besonderen auch die instantane Lärmbelastung – neben der Lage der Wohnung des Probanden auch vom Aufenthaltsort des Probanden innerhalb der Wohnung abhängen kann, werden als maßgebliche Erhebungspunkte neben der lautesten Fassade der Probandenwohnung auch die Schallpegel vor dem Schlafzimmer- und dem Wohnzimmerfenster bestimmt.

Verwendete akustische Maße

Die akustische Belastungssituation an Straßen oder Schienenverkehrswege verändert sich im tageszeitlichen Verlauf durch die Anzahl bzw. Häufigkeit der Ereignisse.

Der Gesetzgebung (u.a. EU-Richtlinie 2002/49/EG) und den einschlägigen Richtlinien liegt der energieäquivalente Mittelungspegel L_{Aeq} zugrunde. Bei der Bildung des energieäquivalenten Mittelungspegels gehen neben den Maximalpegneln die Dauer und die Häufigkeit der Schallereignisse nach dem Prinzip der energieäquivalenten Mittelung ein. Der Mittelungspegel L_{Aeq} weist daher einen ausgeprägten tageszeitlichen Verlauf auf, wohingege zu erwarten ist, dass der Maximalpegel (je Stunde) unabhängig von der Tageszeit ist.

Neben der quellenspezifischen Belastung durch den unmittelbaren Verkehrslärm weist auch die unspezifische Hintergrundbelastung (allgemeiner Verkehr, gewerblicher Lärm, Kommunikationsgeräusche u.v.m) einen tageszeitlichen Verlauf auf. Zur Kontrolle eines möglichen Einflusses soll daher auch der Hintergrundgeräuschpegel über den Lauf des Tages erfasst werden.

Zusammenfassend sollen daher Kenngrößen des Maximalpegels, des Mittelungspegels und des Hintergrundgeräuschs stündlich gemessen werden.

3.4 Auswertungskonzept

Die Konzeption von Beurteilungspegeln wie dem L_{den} impliziert, dass die Lärmbelastung am Abend und in der Nacht ein höheres Gewicht bzw. einen stärkeren Einfluss auf die Belästigung als die Belastung am Tage hat. Die Gültigkeit dieser Grundannahme kann auf unterschiedliche Art und Weise geprüft werden:

a) Bezüglich der unterschiedlichen Pegelverlaufstypen war geplant, pro Quelle die auf 24h bezogene Gesamtbelästigung zwischen den unterschiedlichen Verlaufstypen zu vergleichen. Bei gleicher Lärmbelastung $L_{\text{Aeq,24h}}$ sollte die auf 24h bezogene Gesamtbelästigung in den Gebieten mit gegen Abend abnehmendem Verkehr geringer sein als in den Gebieten mit gleichmäßiger Belastung. Wie später in Abschnitt 4.1 gezeigt wird, konnte allerdings auch nach Abschluss der akustischen Messungen und Berechnungen anhand der akustischen Daten keine Zuordnung der Untersuchungsgebiete zu den verschiedenen Pegelverlaufstypen gemäß Untersuchungsdesign vorgenommen werden. Daher werden anstelle des Vergleichs der Lärmbelästigung in Abhängigkeit des Pegelverlaufstyps individuelle Stundenbelästigungscurteile und Stundenpegel ausgewertet. Für verschiedene Tagesabschnitte werden Stunden bezogene Reaktionen und Pegel
zusammengefasst und im Rahmen des Allgemeinen Modells pro Lärmsquelle die Belästigungsreaktionen gebietsübergreifend in Abhängigkeit der Faktoren „Tageszeitfenster“ und „Pegelklasse“ analysiert.

Die vorstehenden Analysen ermöglichen also eine Überprüfung der Grundannahme einer unterschiedlichen Belästigungswirkung in Abhängigkeit von der Tageszeit und liefern eine Abschätzung der tageszeitlich bedingten Wirkungsunterschiede, wobei diese Unterschiede in Einheiten der Belästigungsreaktion ausgedrückt werden.

Die Daten aus der experience-sampling-Studie ermöglichen einen Abgleich zwischen den tageszeitlich bezogenen Belästigungsurteilen im Interview und den Urteilen über den entsprechenden Zeitraum mittels der Datenerfassungsgeräte und geben Aufschluss über die Validität der im Interview erhobenen Belästigungsurteile für bestimmte Zeiten des Tages. Zur quantitativen Abschätzung der Ähnlichkeit der verschiedenen erhobenen Belästigungstagesverläufe werden Profilkorrelationen zwischen den Tagesprofilen der im Interview sowie mittels PDA erhobenen stündlichen Belästigungsurteile
bestimmt. Außerdem werden Profilkorrelationen zwischen den Belästigungs- und dem Tagesprofil der stündlichen Mittelungspegel gerechnet, um Aufschluss darüber zu erhalten, welcher Ansatz zur Erhebung der Belästigung stärker mit der akustischen Situation der Probanden korrespondiert.
4. Durchführung der empirischen Untersuchung

4.1 Gebietsauswahl

Im Rahmen der Feldstudie wurden in mehreren Untersuchungsgebieten (Wohngebieten mit dominierendem Straßen- bzw. Schienenverkehrslärm) persönliche Interviews durchgeführt. In Vorbereitung der Datenerhebungen im Feld wurden Untersuchungsgebiete in NRW gesucht, die die Anforderungen entsprechend zum Untersuchungsdesign erfüllen. Im Wesentlichen zählen zu den Anforderungen:

- akustische Dominanz der Lärmquelle Schienenverkehr bzw. Straßenverkehr (Mittelungspegelunterschied zu anderen Umweltlärmquellen mindestens 10 dB im L_{Aeq,24h})
- Immissionsmittelungspegel außen deutlich über 60 dB(A) in der ersten Wohnhauszeile an der Lärmquelle,
- möglichst keine weiteren Lärmquellen und sonstigen Emissionen in unmittelbarer Nähe der Untersuchungsgebiete (z.B. Industrie).
- vergleichbare Bebauungs- und Sozialstruktur
- ausreichende Anzahl verfügbarer Wohneinheiten

Das im ursprünglichen Untersuchungsplan vorgesehene Auswahlkriterium Pegelverlauf (gleichmäßig versus abfallend in den Abendstunden) musste im Zuge der Vorbereitungsarbeiten fallen gelassen werden, da sich keine entsprechend ausgeprägten Pegelverlaufstypen finden ließen.

Für eine Vorauswahl der Gebiete wurden folgende Hilfsmittel herangezogen:

- NRW-Straßenkarte mit Angaben der durchschnittlichen täglichen Verkehrsmenge auf den Straßen des überörtlichen Verkehrs sowie größeren innerstädtischen Hauptstraßen nach den Daten der Straßenverkehrszählung 1995 (Stand: Mitte 1996; Maßstab 1:250000)
- im Internet einsehbaren Lärmkarten des Landesumweltamts Nordrhein Westfalen (LUA NRW; www.lua.nrw.de)
- Straßenatlanten (Maßstab 1: 20000)

Somit konnte die ursprünglich geplante Variation in der Belastungsstruktur durch die Auswahl von Untersuchungsgebieten mit eher schwach ausgeprägten Belastungsspitzen und einem Belastungsabfall ab dem Spätnachmittag (Typ 1 und Typ 3) und Gebieten mit stärkerer Belastung auch am Spätnachmittag und am Abend (Typ 2 und Typ 4) in dieser Form nicht realisiert werden.

Abbildung 4.1: Verkehrsmengendaten der Straßenverkehrslärmgebiete

Tabelle 4-1: Realisiertes Untersuchungsdesign – (a) Hauptbefragung, (b) experience-sampling-Studie

Pegelangaben beziehen sich auf den L$_{Aeq,tag}$ (6-22h)

<table>
<thead>
<tr>
<th>a) Hauptbefragung</th>
<th>Schiene (N=427)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straße (N=683)</td>
<td>Schiene</td>
</tr>
<tr>
<td>Gebiet Dortmund</td>
<td>Gebiet Bochum-Herner Straße</td>
</tr>
<tr>
<td>198 Pbd</td>
<td>145 Pbd</td>
</tr>
<tr>
<td>< 60 dB(A): 76 Pbd.</td>
<td>< 60 dB(A): 87 Pbd.</td>
</tr>
<tr>
<td>Gebiet Bochum-Herner Straße</td>
<td>Gebiet Bönen</td>
</tr>
<tr>
<td>205 Pbd</td>
<td>205 Pbd</td>
</tr>
<tr>
<td>Gebiet Hamm</td>
<td>Gebiet Hamm</td>
</tr>
<tr>
<td>222 Pbd</td>
<td>222 Pbd</td>
</tr>
</tbody>
</table>

| **Gebiet Düsseldorf** | **Gebiet Bochum-Wasserstraße** |
| 177 Pbd | 163 Pbd |

<table>
<thead>
<tr>
<th>b) experience-sampling-Studie (Teilsample)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Straße (N=89)</td>
<td>Schiene (N=42)</td>
</tr>
<tr>
<td>Gebiet Dortmund</td>
<td>Gebiet Bochum-Hernerstraße</td>
</tr>
<tr>
<td>26 Pbd</td>
<td>15 Pbd.</td>
</tr>
<tr>
<td>Gebiet Bochum-Hernerstraße</td>
<td>Gebiet Bönen</td>
</tr>
<tr>
<td>15 Pbd</td>
<td>15 Pbd</td>
</tr>
<tr>
<td>Gebiet Hamm</td>
<td>Gebiet Hamm</td>
</tr>
<tr>
<td>27 Pbd</td>
<td>27 Pbd</td>
</tr>
<tr>
<td>Gebiet Düsseldorf</td>
<td>Gebiet Bochum-Wasserstraße</td>
</tr>
<tr>
<td>28 Pbd</td>
<td>20 Pbd</td>
</tr>
</tbody>
</table>

4.2 Vorgehen – Akustik

Um den Aufwand an der akustischen Messtechnik in handhabbaren Grenzen zu halten wurde eine Kombination aus quellenspezifischer Messung der tageszeitlichen Pegelverlaufs- und Ausbreitungsrechnung zur gleichzeitigen Bestimmung der Lärmbelastungsvariablen bei ca. 150 - 200 Probanden der Befragungsstudie und 20 Probanden der experience-sampling-Studie je Untersuchungsgebiet angewandt:
Der tageszeitliche Verlauf der Lärmbelastung wurde an der Quelle an einem Dauermesspunkt von 5.00 bis 23.00 Uhr gemessen und der entsprechende Verlauf bei den Probanden jeweils mittels Ausbreitungsrechnung berechnet. Diese Berechnungen berücksichtigen die Pegelabnahme durch Abstand, Abschirmung von und Reflexionen an Gebäuden sowie sonstigen Einflüssen von der Quelle zur Probandenwohnung. Die berechneten Pegelverläufe bei den Probanden wurden zudem durch Stichprobenmessungen, die auch Lärmeinwirkungen aus den Nebenstraßen erfassen, kontrolliert und ggfs. angepasst.

Dauermessungen

Die Emissionen der Verkehrslärmquelle wurden an einem Dauermesspunkt, dessen Standort nahe der Schienenstrecke bzw. der betrachteten Straße (Abstand zwischen 5 und 15 m) gewählt wurde, erfasst. Dieser Messpunkt lieferte die Referenzmessung für den tageszeitlichen Verlauf der Lärmbelastung an der betrachteten Verkehrslärmquelle.

Hierfür wurden je Gebiet an den 3 Wochentagen der experience-sampling-Studie (Dienstag bis Donnerstag) Schallmessungen über die Dauer von jeweils 5.00 Uhr bis 23.00 Uhr durchgeführt. In Intervallen von jeweils 1 vollen Stunde wurden die kumulierten Messergebnisse des Mittelungspegels L_{Aeq}, des Maximalpegels $L_{A_{max}}$, des Perzentilpegels L_1 und des Hintergrundpegel L_{95} erfasst.

Stichprobenmessungen

Auswertung der Messungen

Ausgangsgröße für die schalltechnischen Berechnungen waren die Pegelverläufe der verwendeten akustischen Kenngrößen am Dauermesspunkt. Ausgehend vom Mittelungspegel am Dauermesspunkt wurde für jeden Stichprobenmesspunkt der entsprechende zu erwartende Mittelungspegel am Stichprobenmesspunkt durch Ausbreitungsrechnung in einem 3-dimensionalen Rechenmodell bestimmt. Der rechnerisch ermittelte Mittelungspegel wurde dem gemessenen Mittelungspegel gegenübergestellt.

Die oben beschriebene Vorgehensweise wurde zudem für die weiteren verwendeten akustischen Maße Spitzenpegel und Hintergrundgeräuschpegel unter Verwendung der entsprechenden gemessenen Werte in analoger Weise durchgeführt.

4.3 Durchführung der sozialwissenschaftlichen Erhebungen

4.3.1 Konstruktion des Fragebogens für die Hauptbefragung

Tabelle 4-2: Inhalte des Fragebogens für die Hauptbefragung im Überblick

<table>
<thead>
<tr>
<th>Thema</th>
<th>Items</th>
<th>Skala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wohnsituation</td>
<td>WohnsitznavbarSupportedContent, Art der Behausung/Hauttyp, Stockwerk Wohnraum/Schlafrum, Mieter/Eigentümer</td>
<td>Antwortkategorien</td>
</tr>
<tr>
<td>Fenstertyp</td>
<td>Fenstertyp Wohnraum/Schlafrum, Fensterstellung Wohnraum/Schlafrum im Sommer/Winter</td>
<td>Antwortkategorien</td>
</tr>
<tr>
<td>Außenbereiche</td>
<td>Vorhandensein von Garten, Terrasse, Balkon und Häufigkeit der Nutzung im Sommer/Winter, Nutzungseinschränkung</td>
<td>Häufigkeitsskala, 5-stufig offene Frage</td>
</tr>
<tr>
<td>Abstand zur Lärmquelle</td>
<td>Wohnung gesamt, Fensterausrichtungen zur Lärmquelle</td>
<td>Antwortkategorien</td>
</tr>
<tr>
<td>Wohnzufriedenheit</td>
<td>Zufriedenheit mit Wohnung/Wohngegend, störende und gesundheitsbeeinträchtigende Lebensbedingungen im Wohngebiet</td>
<td>Intensitätsskala, 5-stufig</td>
</tr>
<tr>
<td>Umweltprobleme</td>
<td>Umweltproblemliste</td>
<td>wichtigstes, zweitwichtigstes</td>
</tr>
<tr>
<td>Psycho-vegetative Empfindlichkeit</td>
<td>Empfindlichkeit gegenüber Lärm, Gerüchen, Wettereinfüssen, alltäglichen Belastungssituationen (Hetze/Stress), Glaube an Lärmgewöhnung</td>
<td>Intensitätsskala, 5-stufig</td>
</tr>
<tr>
<td>Gesundheitszustand</td>
<td>Zufriedenheit mit dem Gesundheitszustand</td>
<td>Intensitätsskala, 5-stufig</td>
</tr>
<tr>
<td>Schlafqualität</td>
<td>Zufriedenheit mit Schlaf allgemein, Schlafzeiten, Schlafstörungen</td>
<td>Intensitätsskala, 5-stufig</td>
</tr>
<tr>
<td>Einstellung zur Lärmquelle</td>
<td>nützlich, zumutbar, notwendig, gefährlich, typisch für die Gegend, interessant, ungesund, bequem für die Nutzer, umweltfreundlich</td>
<td>Zustimmungsskala, 5-stufig</td>
</tr>
<tr>
<td>Gestörtheit und Belästigung durch verschiedene Lärmquellen</td>
<td>Lärm allgemein, Lärm von Straßen-, Bahn- u. Flugverkehr, Industrieanlagen, Kinderspielplätzen, Nachbarn, Gaststätten/Diskotheken, Sportstätten, sonstige</td>
<td>Intensitätsskala, 5-stufig, ICBEN Thermometerskala</td>
</tr>
<tr>
<td>Aktivitätenstörungen durch Hauptlärmquelle</td>
<td>Unterhaltungen/Telefonieren, Radio/Musikhören/TV, Lesen/Nachdenken/Konzentrieren, häusliche Geselligkeit, Unterhaltung im Freien, Aufenthalt/Erholung im Freien, Einschlafen, Durchschlafen</td>
<td>Intensitätsskala, 5-stufig, ICBEN</td>
</tr>
<tr>
<td>Gestörtheit und Belästigung durch Hauptlärmquelle im Tagesverlauf</td>
<td>Belästigung und Gestörtheit im Tagesverlauf (ständige Angabe), Gestörtheit tags, nachts, Tageszeiten mit starker Belastung</td>
<td>Intensitätsskala, 5-stufig, ICBEN offene Frage</td>
</tr>
<tr>
<td>Reaktionen auf den Lärm</td>
<td>lauter sprechen, gereizt reagieren, Tätigkeit zeitlich/räumlich verschieben, Lärm ignorieren, Oropax verwenden, Beruhigungs-/Schlafmitteleinnahme, über Lärm ärgerm, TV/Radio laut stellen, Fenster schließen, ggf. auf Benutzung Balkon/Garten/Terrasse verzichten</td>
<td>Häufigkeitsskala, 5-stufig</td>
</tr>
<tr>
<td>Maßnahmen gegenüber Lärm</td>
<td>Schallschutzmaßnahmen, Raumverlegung, Beschwerden, Umzug, sonstige</td>
<td>ja/nein</td>
</tr>
<tr>
<td>Verantwortung für den Lärm</td>
<td>Industriebetriebe, Autofahrer, kommunale Behörden, Staat/Regierung, sonstige</td>
<td>Intensitätsskala, 5-stufig</td>
</tr>
<tr>
<td>Bemühungen der Verantwortlichen</td>
<td>Industriebetriebe, Autofahrer, kommunale Behörden, Staat/Regierung, sonstige</td>
<td>Intensitätsskala, 5-stufig</td>
</tr>
<tr>
<td>Zeiten im Haus</td>
<td>Stunden außer Haus, Uhrzeit verlassen des Hauses/Rückkehr, Zeiten des Schlafengehens und Aufstehens unter der Woche/Wochenende</td>
<td>Antwortkategorien</td>
</tr>
<tr>
<td>Soziodemografie</td>
<td>Arbeitssituation (inkl. Abfrage Schichtdienst), Berufsgruppe, Schulabschluss, Berufs-/Hochschulabschluss, Alter, Geschlecht, Staatsangehörigkeit, Muttersprache, Haushaltsgröße, Haushalteinkommen</td>
<td>Antwortkategorien</td>
</tr>
</tbody>
</table>
4.3.2 Erhebungsinstrumente der experience-sampling-Studie

In der ergänzenden experience-sampling-Studie wurden die folgenden Erhebungsinstrumente eingesetzt:

- Elektronischer Kurzfragebogen zur stündlichen Lärmbelästigung (an drei aufeinander folgenden Tagen tagsüber in der Zeit von 8 bis 23 Uhr jeweils zur vollen Stunde auf ein akustisches Signal hin auszufüllen);
- Morgen-Bogen: Fragebogen für Angaben zur zurückliegenden Nacht: Schlafzeiten, Schlafqualität, ggf. nächtlichen Störungen (jeweils morgen nach dem Aufstehen auszufüllen);
- Abend-Bogen: Fragebogen mit Fragen zu Aufenthaltszeiten im Wohnbereich (innen/außen), Lärmbelästigung am Tage, Akzeptanz der Erhebungsinstrumente, insbesondere des Handheld-Computers (abends auszufüllen).

Tabelle 4-3 zeigt die Inhalte der Erhebungsinstrumente der experience-sampling-Studie im Überblick.

Tabelle 4-3: Inhalte der Erhebungsinstrumente der experience-sampling-Studie im Überblick

<table>
<thead>
<tr>
<th>Thema</th>
<th>Items</th>
<th>Skala</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Elektronischer Fragebogen – Handheld-Computer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lärmbelästigung durch Hauptlärmquelle</td>
<td>Wie stark haben Sie sich in der letzten Stunde durch Lärm vom [Straßen-/Bahn-] Verkehr gestört oder belästigt gefühlt?</td>
<td>Intensitätsskala, 5-stufig, ICBEN</td>
</tr>
<tr>
<td>Aufenthaltsort</td>
<td>Wo haben Sie sich in der letzten Stunde überwiegend aufgehalten?</td>
<td>Antwortkategorien</td>
</tr>
<tr>
<td>Aktivität</td>
<td>Was haben Sie in der letzten Studne überwiegend gemacht?</td>
<td>Antwortkategorien</td>
</tr>
<tr>
<td>Fensterstellung (bei Aufenthalt im Haus)</td>
<td>Wie war die überwiegende Fensterstellung in der letzten Stunde?</td>
<td></td>
</tr>
<tr>
<td>b) Morgen-Bogen</td>
<td>Zusammenfassung</td>
<td></td>
</tr>
<tr>
<td>Aufstehen</td>
<td>Wecker, Uhrzeit des Aufstehens</td>
<td></td>
</tr>
<tr>
<td>Lärmbelästigung durch Hauptlärmquelle</td>
<td>Wie stark haben Sie sich in den frühen Morgenstunden durch Lärm vom [Straßen-/Bahn-] Verkehr gestört oder belästigt gefühlt?</td>
<td>Intensitätsskala, 5-stufig, ICBEN</td>
</tr>
<tr>
<td>Zubettgehen am Vorabend, Schlafqualität</td>
<td>Uhrzeit des Zubettgehehens, Einschlafqualität, Durchschnafqualität</td>
<td>5-stufig, Rohrmann-Skala (Rohrmann, 1978)</td>
</tr>
<tr>
<td>Lärmbelästigung durch Hauptlärmquelle</td>
<td>Wie stark haben Sie sich nach dem Ausfüllen des Fragebogens durch Lärm vom [Straßen-/Bahn-] Verkehr gestört oder belästigt gefühlt?</td>
<td>Intensitätsskala, 5-stufig, ICBEN</td>
</tr>
<tr>
<td>b) Abend-Bogen</td>
<td>Zusammenfassung</td>
<td></td>
</tr>
<tr>
<td>Zeiten außer Haus</td>
<td>Zu welchen Zeiten waren Sie heute außer Haus unterwegs (nicht Garten/Balkon)?</td>
<td>Zeitstrahl</td>
</tr>
<tr>
<td>Belästigung zu Hause durch …</td>
<td>Wie stark haben Sie sich während des ganzen Tags zu Hause durch Lärm vom [Straßen-/Bahn-] Verkehr, Piepsen des Taschencomputers, Beantwortung der Fragen gestört oder belästigt gefühlt?</td>
<td>Intensitätsskala, 5-stufig, ICBEN</td>
</tr>
<tr>
<td>Handhabung des Taschencomputers insgesamt</td>
<td>Wie gut kamen Sie mit der Handhabung des Taschencomputers zurecht?</td>
<td></td>
</tr>
<tr>
<td>sonstige Probleme</td>
<td>Uhrzeit, Piepsen nicht gehört, Fragen aus anderen Gründen nicht beantwortet, Verständnisprobleme</td>
<td></td>
</tr>
</tbody>
</table>
4.3.3 Organisatorische Vorbereitung der sozialwissenschaftlichen Erhebungen

Alle in der unbereinigten Bruttostichprobe enthaltenen Personen wurden in einem Probandenschreiben der Ruhr-Universität Bochum unmittelbar vor Befragungsbeginn über die Studie und die

\(^2\) gemeint sind hier und im folgenden Interviewerinnen und (männliche) Interviewer
Kontaktaufnahme durch eine Interviewerin oder einen Interviewer informiert. In dem Schreiben wurde die Einhaltung des Datenschutzes sowie eine anonyme Auswertung und Darstellung der Daten zugesichert und um Teilnahme an der Befragung gebeten.

4.4 Durchführung der Hauptbefragung

Es sollten gemäß dem geplanten Untersuchungsdesign insgesamt 1200 Interviews in acht Untersuchungsgebieten, also 150 Interviews pro Gebiet erzielt werden. Nach Änderung des Untersuchungsdesigns (Wegfall des Faktors „Pegelverlaufstypen“ und Reduzierung der Schienenerhebungsgebiete von vier auf zwei; s.o.) wurde angestrebt, in den verbleibenden sechs untersuchten Gebieten die Gesamtzahl von 1200, mindestens aber die Anzahl von 150 Interviews pro Gebiet (= 900 Interviews insgesamt) zu realisieren. Vorgabe an die Interviewer war, innerhalb des begrenzten Erhebungszeitraums die Anzahl von 150 bis 200 Interviews pro Gebiet zügig zu erreichen.

Die Zielvorgabe „150 bis 200 Interviews“ konnte bis auf eine Ausnahme (Bo-Herner Str.) in allen Untersuchungsgebieten erfüllt werden. In den Straßengebieten wurden zusammen 683 Interviews (pro Gebiet durchschnittlich 171) und in den Schienengebieten 427 Interviews (im Durchschnitt 214 pro Gebiet), somit insgesamt 1110 Interviews realisiert. Tabelle 4-4 zeigt die Statistik zur Ausschöpfung der Stichprobe.
Durchführung der empirischen Untersuchung

Tabelle 4-4: Ausschöpfung der Stichprobe und Gründe für Ausfälle

<table>
<thead>
<tr>
<th>Lärmquelle</th>
<th>Schiene</th>
<th>Straße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bönen</td>
<td>Hamm</td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Grundgesamtheit (gemeldete Personen)</td>
<td>917</td>
<td>100</td>
</tr>
<tr>
<td>Gezogene Stichprobe</td>
<td>638</td>
<td>69,6</td>
</tr>
<tr>
<td>Brutto-Stichprobe (angeschriebene Personen)</td>
<td>638</td>
<td>100</td>
</tr>
<tr>
<td>/. stichprobenneutrale Ausfälle:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adresse falsch, Zielperson verstorben, Zielperson verzogen</td>
<td>28</td>
<td>4,4</td>
</tr>
<tr>
<td>Kriterium nicht erfüllt z.B. < 18 Jahre, geringe Sprachverständlichkeit)</td>
<td>56</td>
<td>8,8</td>
</tr>
<tr>
<td>bereinigte Brutto-Stichprobe</td>
<td>554</td>
<td>100</td>
</tr>
<tr>
<td>/. systematische Ausfälle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zielperson nicht angetroffen</td>
<td>119</td>
<td>21,5</td>
</tr>
<tr>
<td>Zielperson kein Interesse</td>
<td>227</td>
<td>41,0</td>
</tr>
<tr>
<td>keine Angabe über Ursache</td>
<td>3</td>
<td>0,5</td>
</tr>
<tr>
<td>Summe der Ausfälle</td>
<td>349</td>
<td>63,0</td>
</tr>
<tr>
<td>Realisierte Interviews</td>
<td>205</td>
<td>37,0</td>
</tr>
</tbody>
</table>

4.5 Durchführung der experience-sampling-Studie

Im Anschluss an das Interview (vgl. 4.5) wurden die Probanden nach ihrem Interesse an der Teilnahme an einer vertiefenden Studie gefragt. Bei vorhandenem Interesse wurde das Vorgehen erläutert und die Probanden über den Aufwand der Teilnahme informiert. Aus jedem Befragungsgebiet wurden zwischen 15 und 28 Teilnehmer rekrutiert, wie nachfolgende Tabelle zeigt. Insgesamt wurden in diesen Untersuchungsteil 131 Probanden eingeschlossen.

Tabelle 4-5: Verteilung der Teilnehmer/innen an der experience-sampling-Studie

<table>
<thead>
<tr>
<th>Untersuchungsgebiet</th>
<th>Lärmquelle</th>
<th>Anzahl Teilnehmer</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dortmund</td>
<td>Straße</td>
<td>26</td>
<td>19,8</td>
</tr>
<tr>
<td>Bochum/Hernerstr.</td>
<td>Straße</td>
<td>15</td>
<td>11,5</td>
</tr>
<tr>
<td>Düsseldorf</td>
<td>Straße</td>
<td>28</td>
<td>21,4</td>
</tr>
<tr>
<td>Bochum/Wasserstr.</td>
<td>Straße</td>
<td>20</td>
<td>15,3</td>
</tr>
<tr>
<td>Bönen</td>
<td>Schiene</td>
<td>15</td>
<td>11,5</td>
</tr>
<tr>
<td>Hamm</td>
<td>Schiene</td>
<td>27</td>
<td>20,6</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>131</td>
<td>100</td>
</tr>
</tbody>
</table>
Am Vortag des ersten Erhebungstages der experience-sampling-Studie wurden die PDA-Geräte an die Probanden von geschulten Mitarbeitern ausgegeben und ausführlich erläutert. Probeeingaben wurden vorgenommen. Ab dem ersten Erhebungstag nahmen die Probanden drei Tage lang die Eingaben zur vollen Stunde auf ein vom PDA ausgesandtes akustisches Signal hin im maximalen Tageszeitraum zwischen 8 und 23 Uhr vor (vgl. 4.3.2). Der tägliche Beginn und das Ende der Eingabe wurden mit dem Probanden individuell abgestimmt, um zu vermeiden, dass das akustische PDA-Signal abends am Einschlafen hindert bzw. morgens den Untersuchungsteilnehmer aufweckt. Neben der Angabe zu Lärmbelästigung der zurückliegenden Stunde wurde die hauptsächlich ausgeübte Tätigkeit, der Aufenthaltsort sowie - bei Aufenthalt innerhalb der Wohnräume - die Fensterstellung erfragt. Eingaben erfolgten nur, wenn der Proband zu Hause war, aus den Abwesenheitszeiten ergaben sich entsprechende Datenlücken. Ergänzend zu den Eingaben in das Eingabegerät wurden morgens und abends Fragebögen ausgefüllt (siehe auch Tabelle 4-3). Darin wurden Angaben zur Schlafqualität gemacht, die Belästigung, die aus der stündlichen Eingabe resultiert sowie besondere Vorkommnisse während des Untersuchungszeitraums wurden erfasst. Unten stehende Tabelle zeigt die Ergebnisse der zentralen Variablen, die zur Bewertung der Akzeptanz der Methode herangezogen wurden.

Tabelle 4-6: Akzeptanz der PDA-Methode durch die Probanden

<table>
<thead>
<tr>
<th>Variablen zur Akzeptanz der PDA-Methode</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belästigung durch akustisches Signal</td>
<td>1,42</td>
<td>0,52</td>
<td>126</td>
</tr>
<tr>
<td>Belästigung durch Beantwortung der Frage</td>
<td>1,33</td>
<td>0,50</td>
<td>126</td>
</tr>
<tr>
<td>Handhabungsprobleme</td>
<td>1,60</td>
<td>0,87</td>
<td>124</td>
</tr>
<tr>
<td>Index "PDA-Akzeptanz"</td>
<td>1,45</td>
<td>0,39</td>
<td>126</td>
</tr>
</tbody>
</table>

Es wird deutlich, dass es - insgesamt gesehen - zu keinen erwähnenswerten Akzeptanzproblemen hinsichtlich der PDAs im Untersuchungszeitraum gekommen ist. Vereinzelt sind Handhabungsprobleme aufgetreten, diese konnten in der Regel durch ein Telefongespräch mit Mitarbeitern aus dem Projektteam gelöst werden.
4.6 Untersuchungsablauf im Überblick

Tabelle 4-7: Untersuchungsablauf Einzelaufgabe 2131

<table>
<thead>
<tr>
<th>Monat/ Jahr</th>
<th>Arbeitsphasen</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/2002</td>
<td>Projektabstimmung</td>
</tr>
<tr>
<td></td>
<td>Fragebogenentwicklung</td>
</tr>
<tr>
<td></td>
<td>Programmierung Handheld-Computer</td>
</tr>
<tr>
<td></td>
<td>Auswertungskonzept</td>
</tr>
<tr>
<td>09/2003</td>
<td>Gebietsauswahl</td>
</tr>
<tr>
<td></td>
<td>Adressbeschaffung (Einwohnermeldeämter) ↓</td>
</tr>
<tr>
<td></td>
<td>Stichprobenziehung</td>
</tr>
<tr>
<td>02/2004</td>
<td>Bewohner aus 6 Wohngebieten</td>
</tr>
<tr>
<td></td>
<td>4 Gebiete mit überwiegendem Straßenverkehrslärm</td>
</tr>
<tr>
<td></td>
<td>2 Gebiete mit überwiegendem Bahnverkehrslärm</td>
</tr>
<tr>
<td>04/2004</td>
<td>face-to-face Interviews n= 1110 Probanden</td>
</tr>
<tr>
<td></td>
<td>- Teilstichprobe -</td>
</tr>
<tr>
<td></td>
<td>experience-sampling-Studie an drei aufeinanderfolgenden Tagen n= 131 Probanden</td>
</tr>
<tr>
<td>07/2004</td>
<td>Geräuschpegelmessungen und -kalkulationen: L_{Aeq}, L_{1}, L_{95} für lauteste Fassade, Fassade Wohnzimmer und Schlafzimmer für die Zeiträume:</td>
</tr>
<tr>
<td></td>
<td>- 5 bis 23.00 Uhr (ständlich)</td>
</tr>
<tr>
<td></td>
<td>- Tag (6-22 Uhr)</td>
</tr>
<tr>
<td></td>
<td>- Nacht (22-6 Uhr)</td>
</tr>
<tr>
<td></td>
<td>- „Day“ (6-18 Uhr)</td>
</tr>
<tr>
<td></td>
<td>- Abend/Evening (18-22 Uhr)</td>
</tr>
<tr>
<td></td>
<td>- 24h: L_{Aeq}, L_{den}</td>
</tr>
<tr>
<td>12/2004</td>
<td>Datenaufbereitung Datenauswertung</td>
</tr>
<tr>
<td></td>
<td>Schlussbericht zur Einzelaufgabe</td>
</tr>
</tbody>
</table>

Durchführung der empirischen Untersuchung
5. Ergebnisse

Es werden zunächst nach einer Beschreibung der Stichprobe (Abschnitt 5.1) die Ergebnisse der akustischen Auswertung dargestellt (Abschnitt 5.2). Danach werden die Resultate der Hauptbefragung zur Belästigung im Tagesverlauf im Abschnitt 5.3 vorgestellt.

Da die meisten Variablen nicht normal verteilt sind, wurde als Zusammenhangsmaß überwiegend der Korrelationskoeffizient nach Spearman verwendet. Bei einfachen Unterschiedsanalysen wurden nach Möglichkeit nicht-parametrische Unterschiedstests (U-Test, Chi-Quadrat-Test) eingesetzt.

In einem weiteren Auswertungsschritt wurden Modelle zur Abschätzung der Lästigkeitsdifferenzen zwischen verschiedenen Tageszeiten getrennt für Straßen- und Schienenverkehrslärm ausgedrückt in dB (AL-Werte) gerechnet. Die Ergebnisse hierzu sind in Abschnitt 5.3.3 dargestellt.

In Kapitel 5.4 werden die Ergebnisse der experience-sampling-Studie berichtet, die mit einer Teilgruppe der Probanden aus der Befragungsstudie durchgeführt wurde. Zum Abschluss werden die verwendeten Methoden – Befragung und experience-sampling-Erhebung – einander gegenübergestellt und die jeweils gewonnen Ergebnisse mit einander verglichen (Kapitel 5.5).

5.1 Beschreibung der Stichprobe

5.1.1 Beschreibung der Gesamtstichprobe der interviewten Personen

| Tabelle 5-1: Soziodemografische Merkmale in der Gesamtstichprobe |
|------------------|------------------|------------------|
| Gesamtstichprobe | Anzahl | % |
| Geschlecht (N=1110) | | |
| Männlich | 481 | 43,3 |
| Weiblich | 629 | 56,7 |
| Nationalität (N=1110) | | |
| Nicht deutsch | 67 | 6,0 |
| Deutsch | 1043 | 94,0 |
| Muttersprache (N=1110) | | |
| Nicht deutsch | 107 | 9,6 |
| Deutsch | 1003 | 90,4 |
Ergebnisse

<table>
<thead>
<tr>
<th>Altersklassen (N=1110)</th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-29 Jahre</td>
<td>150</td>
<td>13,5</td>
</tr>
<tr>
<td>30-39 Jahre</td>
<td>207</td>
<td>18,7</td>
</tr>
<tr>
<td>40-49 Jahre</td>
<td>225</td>
<td>20,3</td>
</tr>
<tr>
<td>50-59 Jahre</td>
<td>182</td>
<td>16,4</td>
</tr>
<tr>
<td>60-69 Jahre</td>
<td>172</td>
<td>15,5</td>
</tr>
<tr>
<td>70-79 Jahre</td>
<td>118</td>
<td>10,6</td>
</tr>
<tr>
<td>> 80 Jahre</td>
<td>55</td>
<td>5,0</td>
</tr>
<tr>
<td>Gesamtstichprobe</td>
<td>499</td>
<td>45,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erwerbstätigkeit (N=1108)</th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vollzeit (>35h/W)</td>
<td>401</td>
<td>36,2</td>
</tr>
<tr>
<td>Teilzeit (15-34h/W)</td>
<td>155</td>
<td>14,0</td>
</tr>
<tr>
<td>Teilzeit (bis 15h/W)</td>
<td>47</td>
<td>4,2</td>
</tr>
<tr>
<td>Sonstiges (beurlaubt, in Ausbildung, Wehrdienst, Zivildienst, Freiwilliges Soziales Jahr)</td>
<td>36</td>
<td>3,2</td>
</tr>
<tr>
<td>Nicht erwerbstätig (davon noch nie erwerbstätig)</td>
<td>469 (46)</td>
<td>42,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berufsgruppen (N=1056)</th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>un-/angelernte Arbeiterberufe</td>
<td>116</td>
<td>11,0</td>
</tr>
<tr>
<td>Facharbeiter/ Handwerker</td>
<td>130</td>
<td>12,3</td>
</tr>
<tr>
<td>einfache/ mittlere Angestellte</td>
<td>471</td>
<td>44,6</td>
</tr>
<tr>
<td>leitende Angestellte</td>
<td>96</td>
<td>9,1</td>
</tr>
<tr>
<td>Beamte (untere, mittlere, gehobene Laufbahn)</td>
<td>84</td>
<td>8,0</td>
</tr>
<tr>
<td>höhere Beamte</td>
<td>18</td>
<td>1,7</td>
</tr>
<tr>
<td>selbständige Handwerker</td>
<td>64</td>
<td>6,1</td>
</tr>
<tr>
<td>Geschäftsinhaber/ Unternehmer</td>
<td>14</td>
<td>1,3</td>
</tr>
<tr>
<td>Freiberufler</td>
<td>60</td>
<td>5,7</td>
</tr>
<tr>
<td>selbständige Landwirte</td>
<td>3</td>
<td>0,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schulabschluss (N=1108)</th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>kein Abschluss</td>
<td>18</td>
<td>1,6</td>
</tr>
<tr>
<td>Volksschule/ Hauptschule</td>
<td>431</td>
<td>38,9</td>
</tr>
<tr>
<td>Realschule</td>
<td>202</td>
<td>18,2</td>
</tr>
<tr>
<td>Polytechnische Oberschule</td>
<td>7</td>
<td>0,6</td>
</tr>
<tr>
<td>Fachhochschulreife/ Fachabitur</td>
<td>124</td>
<td>11,2</td>
</tr>
<tr>
<td>Abitur</td>
<td>316</td>
<td>28,5</td>
</tr>
<tr>
<td>anderer Ausbildungsabschluss</td>
<td>9</td>
<td>0,8</td>
</tr>
<tr>
<td>noch SchülerIn</td>
<td>1</td>
<td>0,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berufsabschluss (N=1106)</th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>kein Abschluss</td>
<td>143</td>
<td>12,9</td>
</tr>
<tr>
<td>noch in beruflicher Ausbildung</td>
<td>41</td>
<td>3,7</td>
</tr>
<tr>
<td>Lehre</td>
<td>490</td>
<td>44,3</td>
</tr>
<tr>
<td>Berufsfachschule</td>
<td>122</td>
<td>11,0</td>
</tr>
<tr>
<td>Fachschule</td>
<td>61</td>
<td>5,5</td>
</tr>
<tr>
<td>Fachhochschule/ Ingenieurschule</td>
<td>56</td>
<td>5,1</td>
</tr>
<tr>
<td>Universität</td>
<td>180</td>
<td>16,3</td>
</tr>
<tr>
<td>sonstige Ausbildung</td>
<td>13</td>
<td>1,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einkommen in Euro (N=1115)</th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 500</td>
<td>28</td>
<td>2,5</td>
</tr>
<tr>
<td>500 - 1000</td>
<td>115</td>
<td>10,3</td>
</tr>
<tr>
<td>1000 - 1500</td>
<td>172</td>
<td>15,4</td>
</tr>
<tr>
<td>1500 - 2000</td>
<td>135</td>
<td>12,1</td>
</tr>
<tr>
<td>2000 - 2500</td>
<td>117</td>
<td>10,5</td>
</tr>
<tr>
<td>2500 - 3000</td>
<td>83</td>
<td>7,4</td>
</tr>
<tr>
<td>> 3000</td>
<td>180</td>
<td>16,4</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>285</td>
<td>25,5</td>
</tr>
</tbody>
</table>
5.1.1.1 Soziodemografie, Geräuschbelastung und Lärmbelästigung

Tabelle 5-2: Unterschiede in der Lärmbelästigung und Geräuschbelastung (L_{Aeq,24h}) in verschiedenen soziodemografischen Gruppen – Ergebnisse der Signifikanzprüfung mit non-parametrische Rangtests (Kruskal-Wallis- bzw. Mann-Whitney-Test)

<table>
<thead>
<tr>
<th>Soziodemografische Variablen (unabh. Var.)</th>
<th>Straßengebiete</th>
<th>Schienenengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Belästigung d. Straßenverkehrslärm</td>
<td>Belästigung d. Schienenverkehrslärm</td>
</tr>
<tr>
<td>Belästigung im Allgemeinen</td>
<td>L_{Aeq,24h}</td>
<td>Belästigung im Allgemeinen</td>
</tr>
<tr>
<td>Berufsgruppe</td>
<td>nicht signifikant</td>
<td>nicht signifikant</td>
</tr>
<tr>
<td>Schulabschluss</td>
<td>nicht signifikant</td>
<td>nicht signifikant</td>
</tr>
<tr>
<td>Berufsabschluss</td>
<td>nicht signifikant</td>
<td>nicht signifikant</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>nicht signifikant</td>
<td>nicht signifikant</td>
</tr>
<tr>
<td>Nationalität</td>
<td>nicht signifikant</td>
<td>nicht signifikant</td>
</tr>
<tr>
<td>Sprache</td>
<td>nicht signifikant</td>
<td>nicht signifikant</td>
</tr>
<tr>
<td>Einkommen</td>
<td>nicht signifikant</td>
<td>nicht signifikant</td>
</tr>
<tr>
<td>Alter (\chi^2=17,850;) (\text{df}=6; p<.01)</td>
<td>nicht signifikant</td>
<td>(\chi^2=22,491;) (\text{df}=6; p<.01)</td>
</tr>
</tbody>
</table>
Ergbnisse

Die Richtung der genannten statistisch signifikanten Unterschiede lassen sich anhand der Durchschnittswerte (Mittelwert, Median) in Tabelle 5-3 ablesen.

Tabelle 5-3: Lärmbelästigung und Geräuschbelastung (L_{Aeq,24h}) in verschiedenen soziodemografischen Gruppen

Mw= Mittelwert; Md= Median; Std= Standardabweichung

<table>
<thead>
<tr>
<th>Soziodemografische Variablen</th>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Belästigung durch ...</td>
<td>(L_{Aeq,24h})</td>
</tr>
<tr>
<td></td>
<td>Lärm allgemein</td>
<td>Straßenverkehrslärm</td>
</tr>
<tr>
<td>Arbeiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,61</td>
<td>2,44</td>
</tr>
<tr>
<td>Md</td>
<td>2,50</td>
<td>2,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,25</td>
<td>1,28</td>
</tr>
<tr>
<td>Angestellte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,51</td>
<td>2,67</td>
</tr>
<tr>
<td>Md</td>
<td>2,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,09</td>
<td>1,20</td>
</tr>
<tr>
<td>Beamter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,61</td>
<td>2,85</td>
</tr>
<tr>
<td>Md</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,19</td>
<td>1,29</td>
</tr>
<tr>
<td>selbständiger Handwerker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/ Landwirt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,47</td>
<td>2,77</td>
</tr>
<tr>
<td>Md</td>
<td>2,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,14</td>
<td>1,34</td>
</tr>
<tr>
<td>Unternehmer / Freiberufner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,67</td>
<td>2,65</td>
</tr>
<tr>
<td>Md</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,23</td>
<td>1,26</td>
</tr>
<tr>
<td>kein Abschluss/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volks-/Hauptschule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,55</td>
<td>2,52</td>
</tr>
<tr>
<td>Md</td>
<td>3,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,22</td>
<td>1,33</td>
</tr>
<tr>
<td>Realschule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,42</td>
<td>2,54</td>
</tr>
<tr>
<td>Md</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,07</td>
<td>1,17</td>
</tr>
<tr>
<td>POS/(Fach-) Abitur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,63</td>
<td>2,77</td>
</tr>
<tr>
<td>Md</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,14</td>
<td>1,20</td>
</tr>
<tr>
<td>18 - 29 Jahre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,52</td>
<td>2,72</td>
</tr>
<tr>
<td>Md</td>
<td>2,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,00</td>
<td>1,11</td>
</tr>
<tr>
<td>30 - 39 Jahre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,51</td>
<td>2,65</td>
</tr>
<tr>
<td>Md</td>
<td>2,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,12</td>
<td>1,20</td>
</tr>
<tr>
<td>40 - 49 Jahre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,78</td>
<td>2,83</td>
</tr>
<tr>
<td>Md</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,17</td>
<td>1,28</td>
</tr>
<tr>
<td>50 - 59 Jahre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,78</td>
<td>2,86</td>
</tr>
<tr>
<td>Md</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,15</td>
<td>1,27</td>
</tr>
<tr>
<td>60 - 69 Jahre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,60</td>
<td>2,58</td>
</tr>
<tr>
<td>Md</td>
<td>2,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,22</td>
<td>1,32</td>
</tr>
<tr>
<td>70 - 79 Jahre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,18</td>
<td>2,27</td>
</tr>
<tr>
<td>Md</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,14</td>
<td>1,20</td>
</tr>
<tr>
<td>80 Jahre und älter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>2,29</td>
<td>2,32</td>
</tr>
<tr>
<td>Md</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Std.</td>
<td>1,31</td>
<td>1,36</td>
</tr>
</tbody>
</table>
Im Einzelnen gilt:

- **Berufsgruppen:** In den Schienengebieten sind die Arbeiter und Unternehmer/Freiberufler stärker einer Belastung durch Schienenverkehrsgeräusche ausgesetzt als die übrigen Berufsgruppen.

- **Schulabschluss:** In den Schienengebieten fühlen sich die Befragten mit höherer formaler Schulbildung stärker durch Schienenverkehrslärm belästigt als diejenigen mit geringerer formaler Schulbildung.

- **Alter:** Insgesamt fühlen sich die älteren Menschen ab 70 Jahren weniger in ihrem Wohngebiet lärmelästigt, als die übrigen Altersgruppen. Dies gilt sowohl für die allgemeine Lärmbelästigung als auch für die Belästigung durch Schienenverkehrslärm und – zumindest tendenziell für die Belästigung durch Straßenverkehrslärm. In den Schienengebieten sind zudem auch die jüngeren Erwachsenen bis 29 Jahre weniger belästigt als die Befragten im mittleren Erwachsenenalter – insgesamt sowie bezogen auf die Lärmquelle Schiene. Ein ähnliches Ergebnis bezogen auf Alter und Lärmbelästigung finden auch Miedema und Voss in einer Sekundäranalyse (1999): Danach ergibt sich ein umgekehrt u-förmiger Zusammenhang zwischen Alter und Lärmbelästigung mit höherer Belästigung im mittleren Erwachsenenalter.

5.1.2 Beschreibung der Stichprobe der experience-sampling-Studie

3 für Straßengebiete: $\chi^2=14.356; \text{df}=6; p=.026$
Ergebnisse

Tabelle 5-4: Verteilung der Teilnehmer experience-sampling-Studie nach Alter und Geschlecht

<table>
<thead>
<tr>
<th></th>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
<th>Gebiete gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Geschlecht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Männlich</td>
<td>43</td>
<td>48,3</td>
<td>21</td>
</tr>
<tr>
<td>Weiblich</td>
<td>46</td>
<td>51,7</td>
<td>21</td>
</tr>
<tr>
<td>Gesamt</td>
<td>89</td>
<td>100,0</td>
<td>42</td>
</tr>
<tr>
<td>Alter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 - 29 Jahre</td>
<td>16</td>
<td>18,0</td>
<td>4</td>
</tr>
<tr>
<td>30 - 39 Jahre</td>
<td>25</td>
<td>28,1</td>
<td>4</td>
</tr>
<tr>
<td>40 - 49 Jahre</td>
<td>22</td>
<td>24,7</td>
<td>12</td>
</tr>
<tr>
<td>50 - 59 Jahre</td>
<td>9</td>
<td>10,1</td>
<td>8</td>
</tr>
<tr>
<td>60 - 69 Jahre</td>
<td>11</td>
<td>12,4</td>
<td>10</td>
</tr>
<tr>
<td>70 - 79 Jahre</td>
<td>4</td>
<td>4,5</td>
<td>4</td>
</tr>
<tr>
<td>80 J. und älter</td>
<td>2</td>
<td>2,2</td>
<td>0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>89</td>
<td>100,0</td>
<td>42</td>
</tr>
</tbody>
</table>

Zum Vergleich: Angaben der Gesamtstichprobe (n Straße = 683; n Schiene = 427; n Gesamt = 1110)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>100,0</td>
<td>42</td>
<td>100,0</td>
<td>42</td>
<td>131</td>
<td>100,0</td>
</tr>
</tbody>
</table>

| Alter in Jahren | 47,6 | 17,6 | 53,4 | 16,0 | 49,8 | 17,3 |

5.2 Ergebnisse der akustischen Erhebungen

5.2.1 Pegel-Probanden-Verteilungen

Die Verteilung der Probanden in Pegelklassen ist für die Untersuchungsgebiete der vorliegenden Untersuchung in Abbildung 5.1a und b dargestellt. Als übergeordnetes Maß zur Darstellung der Pegel-Probanden-Verteilungen wird im Folgenden der Tag-Abend-Nacht-Pegel \(L_{den} \) verwendet. Die Verteilungen für andere akustische Maße unterscheiden sich lediglich quantitativ nicht jedoch qualitativ von den dargestellten Verteilungen.

Die Pegelverteilung für die *Schienengebiete* zeigt einen deutlichen Schwerpunkt bei mittelhohen Pegeln von 50 bis 60 dB(A). Der gesamte abgedeckte Pegelbereich reicht von 32,5 dB(A) bis 75 dB(A) im \(L_{den} \). Sowohl zu hohen als auch zu niedrigen Pegelwerten fällt die Häufigkeitsverteilung gleichförmig ab.

Bei den *Straßengebieten* zeigt sich eine deutlich zweigipfelige Verteilung. Die höchsten Klassenbesetzungen ergeben sich bei Pegelwerten von 60 bis 70 dB(A) im \(L_{den} \), wobei ein ausgeprägtes Maximum zwischen 70 und 72,5 dB(A) auftritt. Ein weiteres relatives Maximum ergibt
sich bei niedrigen bis mittleren Pegelwerten von etwa 45 dB(A). Der gesamte Pegelbereich erstreckt sich von Werten von etwa 30 bis 75 dB(A) im L_{den}. In den weiteren Auswertungen bleiben Pegelwerte unter 35 dB(A) im jeweiligen Pegelmaß unberücksichtigt. Diese Werte sind nur in diesem Kapitel informativ dargestellt.

Abbildung 5.1a und b: Pegel-Probanden-Verteilungen getrennt nach Quelle (Schiene bzw. Straße)
Abbildung 5.2a und b: Pegel-Probanden-Verteilungen für lauteste Fassade getrennt nach einzelnen Gebieten
In Abbildung 5.2a und b sind die Pegel-Probanden-Verteilungen getrennt für die einzelnen Gebiete dargestellt.

Die beiden Schienengebiete erweisen sich als unterschiedlich belastet. Während das Gebiet Bönen überwiegend Pegelwerte zwischen 55 und 62,5 dB(A) aufweist, liegen die Pegel beim Gebiet Hamm überwiegend zwischen 40 und 60 dB(A). Die unterschiedliche Lärmbelastung der beiden Gebiete ist zumindest teilweise auf die unterschiedliche Verkehrsmenge der Bahnstrecken zurückzuführen.

5.2.2 Tageszeitliche Verläufe

In der folgenden Abbildung 5.3 sind die tageszeitlichen Verläufe der unterschiedlichen Pegelmaße dargestellt. Die Darstellungen zeigen die jeweiligen (stündlichen) Mittelwerte über die drei Tage der akustischen Messungen.

Der tageszeitliche Verlauf des Mittelungspegels L_{Aeq} sowie des Perzentilpegels L_{1} zeigt in den Schienengebieten einen vergleichsweise unregelmäßigen Verlauf. Es treten Pegelschwankungen zwischen aufeinander folgenden Stunden von bis zu 10 dB(A) auf. Eine ausgeprägte Pegelabnahme in den Abendstunden tritt im Gebiet Bönen nicht und im Gebiet Hamm erst ab 22.00 Uhr auf. Zudem verlaufen die beiden Pegelmaße Mittelungspegel L_{Aeq} und Perzentilpegel L_{1} auf unterschiedlichem Pegelniveau recht gleichförmig. Der Mittelungspegel wird bei intermittierendem Schienenverkehrslärm stark von den Pegelspitzen bei Vorbeifahrten bestimmt, so dass die beiden Werte starke Zusammenhänge aufweisen.

Bei sehr wenigen Vorbeifahrtereignissen pro Stunde wird der Zusammenhang schwächer und es tritt (wie bei den Randstunden im Gebiet Hamm) sogar der ungewöhnliche Fall auf, dass der Perzentilpegel L_{1} einen geringeren Wert aufweist als der Mittelungspegel L_{Aeq}.

Der stündliche Maximalpegel $L_{A_{\text{max}}}$ ist bei Schienengebieten relativ konstant. Der Maximalpegel wird durch die Vorbeifahrten bestimmt. Die Pegel bei Vorbeifahrten gleicher Zuggattung und gleicher Streckengeschwindigkeit sind nahezu gleich.

Der Hintergrundpegel L_{95} erreicht in den Schienengebieten nur sehr geringe Werte, die teilweise durch entfernten Straßenverkehrslärm bestimmt sind. Eine Zunahme morgens und eine Abnahme abends sind nur in Bönen erkennbar. Hier verläuft eine Anliegerstraße parallel zur Bahnlinie. In Hamm ist der Straßenverkehrslärm von untergeordneter Bedeutung.
In den **Straßengebieten** ergibt sich ein vergleichsweise gleichmäßigerer Verlauf des Mittelungspegels \(L_{\text{Aeq}} \) und des Perzentilpegels \(L_{1} \). Durch die Vielzahl der Vorbeifahrtäreignisse pro Stunde schwanken die beiden Pegelmaße zwischen zwei aufeinander folgenden Stunden gering. In allen 4 Straßengebieten ist im Mittelungspegel eine deutliche Zunahme der Lärmbelastung in den frühen Morgenstunden (im Mittel zwischen 3 und 5 dB(A) in den beiden ersten Stunden) und eine langsamer Abnahme abends (ab etwa 18 Uhr) zu erkennen. Tagsüber (ca. 8 bis 18 Uhr) treten kaum Schwankungen des Mittelungspegels auf.
Ergebnisse

Der Prozentsilpegel weist auch beim Straßenverkehrslärm einen im Vergleich zum Mittelungspegel gleichförmigen Verlauf auf. Demgegenüber schwankt der Maximalpegel L_{AFmax} stark. Dieser wird durch einzelne zumeist zufällige Ereignisse (u.a. Martinshorn, klappernde Aufbauten von LKW etc.) bestimmt.

Wie Tabelle 5-5 zeigt, ist bei einem Vergleich des $L_{Aeq,\ evening\ (18-22h)}$ gegenüber dem $L_{Aeq,\ day\ (6-18h)}$ in keinem der ausgewählten Straßengebiete ein nennenswerter Pegelabfall festgestellt worden. In den ausgewählten Schienengebieten Bönen und insbesondere Hamm nimmt abends der Pegel sogar zu. Entsprechend wird für beide Lärmquellen Schiene und Straße im Rahmen der weiteren Auswertung darauf verzichtet, die Gebiete nach dem Pegelverlauf abends einzuteilen. Somit entfällt der Vergleich der quellenspezifischen gesamten (d.h. auf „tagsüber insgesamt“ bezogenen bzw. ohne Tageszeitbezug abgefragten) Belästigung und Gestörtheit in Abhängigkeit vom Pegelverlaufftyp und der Geräuschbelastung $L_{Aeq,\ tag\ (16h)}$ bzw. $L_{Aeq,\ 24h}$. Stattdessen werden die auf einzelne Tagesstunden bezogenen Belästigungsurteile unter statistischer Kontrolle der Geräuschbelastung betrachtet.

Tabelle 5-5: Mittlere Differenz zw. dem Tagespegel ($L_{Aeq,\ day\ (6-18h)}$) und Abendpegel ($L_{Aeq,\ evening\ (18-22h)}$) in den ausgewählten Untersuchungsgebieten

<table>
<thead>
<tr>
<th>Untersuchungsgebiete mit dominierender Straßenverkehrsgläuβschbelastung</th>
<th>Mittlere Differenz zw. $L_{Aeq,\ day\ (6-18h)}$ und $L_{Aeq,\ evening\ (18-22h)}$</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dortmund</td>
<td>0,7</td>
<td>0,4</td>
</tr>
<tr>
<td>Bochum/ Hemerstr.</td>
<td>1,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Düsseldorf</td>
<td>0,4</td>
<td>0,0</td>
</tr>
<tr>
<td>Bochum/ Wasserstr.</td>
<td>1,6</td>
<td>0,0</td>
</tr>
<tr>
<td>Straße gesamt</td>
<td>0,9</td>
<td>0,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Untersuchungsgebiete mit dominierender Schienenverkehrsgläuβschbelastung</th>
<th>Mittlere Differenz zw. $L_{Aeq,\ day\ (6-18h)}$ und $L_{Aeq,\ evening\ (18-22h)}$</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bönen</td>
<td>-0,4</td>
<td>0,0</td>
</tr>
<tr>
<td>Hamm</td>
<td>-3,7</td>
<td>0,0</td>
</tr>
<tr>
<td>Schiene gesamt</td>
<td>-2,1</td>
<td>1,7</td>
</tr>
</tbody>
</table>
5.2.3 Ergebnisse von Korrelationsberechnungen zur Beziehung zwischen Pegel und Reaktionen

5.2.3.1 Pegel-Reaktionsbeziehungen für unterschiedliche Immissionsorte

Wie in den beiden vorigen Abschnitten dargestellt, zeigen sich unterschiedliche Möglichkeiten zur Darstellung der Lärmbelastung sowohl hinsichtlich der Wahl des Immissionsortes (Wohnzimmer, Schlafzimmer, lauteste Fassade) als auch hinsichtlich des verwendeten Pegelmaßes. Um ein möglichst zutreffendes Maß für die Beschreibung der akustischen Belastung zu erhalten, werden im Folgenden die Zusammenhänge zwischen verschiedenen Pegelwerten und einigen Reaktionsvariablen dargestellt.

In folgender Tabelle 5-6 sind die Korrelationskoeffizienten der Pegelmaße L_{Aeq} und L_1 für unterschiedliche Immissionsorte und der durchschnittlichen Belästigung aufgeführt.

\[\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
& \text{Mittelungspegel } L_{Aeq} & & \text{Perzentilpegel } L_1 & & \\
& \text{Lausteste Fassade} & \text{Wohnzimmer} & \text{Schlafzimmer} & \text{Lausteste Fassade} & \text{Wohnzimmer} & \text{Schlafzimmer} \\
\hline
\text{Straßengebiete / Straßenverkehrslärm} & \text{Durchschnittliche stündliche Lärmbelästigung aus Befragung} & \rho & 0.23 & 0.17 & 0.11 & 0.24 & 0.18 & 0.12 \\
& & \text{p} & 0.000 & 0.000 & 0.006 & 0.000 & 0.000 & 0.003 \\
& & \text{N} & 673 & 673 & 673 & 673 & 673 & 673 \\
\hline
\text{Durchschnittliche stündliche Lärmbelästigung (PDA)} & \rho & 0.19 & 0.13 & 0.14 & 0.19 & 0.14 & 0.13 \\
& \text{p} & 0.079 & 0.227 & 0.184 & 0.070 & 0.190 & 0.216 \\
& \text{N} & 89 & 89 & 89 & 89 & 89 & 89 \\
\hline
\text{Schienengebiete / Schienenverkehrs-lärm} & \text{Durchschnittliche stündliche Lärmbelästigung aus Befragung} & \rho & 0.27 & 0.27 & 0.23 & 0.23 & 0.23 & 0.20 \\
& & \text{p} & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
& & \text{N} & 427 & 427 & 427 & 427 & 427 & 427 \\
\hline
\text{Durchschnittliche stündliche Lärmbelästigung (PDA)} & \rho & 0.44 & 0.44 & 0.38 & 0.26 & 0.20 & 0.21 \\
& \text{p} & 0.003 & 0.003 & 0.013 & 0.101 & 0.213 & 0.175 \\
& \text{N} & 42 & 42 & 42 & 42 & 42 & 42 \\
\hline
\end{array} \]

Die Spearman-Korrelationskoeffizienten liegen bei der durchschnittlichen stündlichen Lärmbelästigung aus der Befragung im Bereich $0.11 \leq \rho \leq 0.27$ und bei der mittels PDA erhobenen durchschnittlichen Belästigung in Straßengebieten im Bereich $0.13 \leq \rho \leq 0.19$ und in Schienengebieten im Bereich $0.20 \leq \rho \leq 0.44$. Der Zusammenhang der durch PDA erhobenen durchschnittlichen Belästigung und den Pegelmaßen ist – nicht zuletzt aufgrund des deutlich geringeren Stichprobenumfangs – zumeist nicht signifikant.

Hinsichtlich der verwendeten Pegelmaße zeigt sich, dass bei Straßengebieten Mittelungspegel und Perzentilpegel nahezu gleich mit den Belästigungsvariablen korrelieren. Bei den Schienengebieten...
zeigt der Mittelungspegel jedoch einen vergleichsweise stärkeren Zusammenhang zur Reaktion als der Perzentilpegel.

Zusammenfassend kann festgestellt werden, dass im untersuchten Tageszeitraum der Mittelungspegel $L_{A_{eq}}$ ermittelt an der lautesten Fassade, die relativ stärksten Zusammenhänge mit den erhobenen Reaktionen aufweist.

5.2.3.2 Pegel-Reaktions-Beziehungen pro Untersuchungsgebiet

Insgesamt ist die Höhe der Pegel-Reaktions-Beziehungen insbesondere in den Straßengebieten eher gering. Um mögliche gebietsspezifische Besonderheiten erkennen zu können, wurden die Korrelationskoeffizienten auch getrennt für die einzelnen Untersuchungsgebiete ermittelt (s. Tabelle 5-7).

Tabelle 5-7: Korrelationen von Belästigung und Aktivitätenstörungen durch Straßenverkehrslärm

rho = Spearman-Rangkorrelation; p= Irrtumswahrscheinlichkeit; n= Anzahl Probanden.

<table>
<thead>
<tr>
<th>Schienengebiete</th>
<th>Gestörtheit tagsüber</th>
<th>Messskala für Belästigung</th>
<th>Belästigung durch Hauptlärquelle</th>
<th>Durchschnittliche stündliche Lärmbelästigung aus Befragung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamm</td>
<td>Mittelungspegel $L_{A_{eq}}$</td>
<td>rho p</td>
<td>.32</td>
<td>.38</td>
</tr>
<tr>
<td>Lauteste Fassade</td>
<td>n</td>
<td>.000</td>
<td>.000</td>
<td>.085</td>
</tr>
<tr>
<td>Bönen</td>
<td>Mittelungspegel $L_{A_{eq}}$</td>
<td>rho p</td>
<td>.30</td>
<td>.33</td>
</tr>
<tr>
<td>Lauteste Fassade</td>
<td>n</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Straßengebiete</td>
<td>Mittelungspegel $L_{A_{eq}}$</td>
<td>rho p</td>
<td>.31</td>
<td>.38</td>
</tr>
<tr>
<td>Lauteste Fassade</td>
<td>n</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Bo-Wasserstraße</td>
<td>Mittelungspegel $L_{A_{eq}}$</td>
<td>rho p</td>
<td>.25</td>
<td>.32</td>
</tr>
<tr>
<td>Lauteste Fassade</td>
<td>n</td>
<td>.002</td>
<td>.000</td>
<td>.008</td>
</tr>
<tr>
<td>Bo-Herner Straße</td>
<td>Mittelungspegel $L_{A_{eq}}$</td>
<td>rho p</td>
<td>.12</td>
<td>.15</td>
</tr>
<tr>
<td>Lauteste Fassade</td>
<td>n</td>
<td>.083</td>
<td>.033</td>
<td>.076</td>
</tr>
<tr>
<td>Dortmund</td>
<td>Mittelungspegel $L_{A_{eq}}$</td>
<td>rho p</td>
<td>.10</td>
<td>.20</td>
</tr>
<tr>
<td>Lauteste Fassade</td>
<td>n</td>
<td>.196</td>
<td>.009</td>
<td>.005</td>
</tr>
<tr>
<td>Düsseldorf</td>
<td>Mittelungspegel $L_{A_{eq}}$</td>
<td>rho p</td>
<td>.10</td>
<td>.20</td>
</tr>
<tr>
<td>Lauteste Fassade</td>
<td>n</td>
<td>.177</td>
<td>.177</td>
<td>.177</td>
</tr>
</tbody>
</table>
Es zeigt sich, dass die Pegel-Reaktions-Beziehungen in beiden Schienengebieten nahezu durchgehend hochsignifikant sind (\(\rho \approx 0,30\)). In den Straßengebieten ergeben sich jedoch deutliche Unterschiede der Enge der Zusammenhänge zwischen den Gebieten. Während in den beiden Bochumer Gebieten noch hochsignifikante bis signifikante Korrelationen auftreten (\(\rho = 0,20 – 0,40\)), fallen die Korrelationen in den beiden Gebieten Dortmund und Düsseldorf demgegenüber deutlich ab (\(\rho \leq 0,20\)).

5.2.3.3 Pegel-Reaktionskorrelationen für verschiedene Tageszeiträume

In diesem Abschnitt werden die Pegel-Reaktionsbeziehungen zwischen der Geräuschbelastung durch Verkehrslärm und den Reaktionsvariablen (Belästigung, Gestörtheit) für verschiedene Tageszeiten dargestellt.

Die nachfolgenden Tabelle 5-8 zeigt Ergebnisse der Korrelationsberechnungen zwischen den verschiedenen Pegelmaßen und den Belästigungsmaßen Belästigung durch Straßen-/Schienenverkehrslärm insgesamt, Gestörtheit tags und Gestörtheit nachts aus den Fragebogenergebnissen zusammengefasst für Straßen- und Schienenverkehrslärmgebiete.

Insgesamt zeigt sich, dass der Zusammenhang zwischen Belästigung und Pegel für die Einschätzung der Belästigung auf der 11stufige Skala am höchsten ausfällt. In den Schienenlärmbgebieten ist dieser Zusammenhang mit Werten um rho = 0,33 stärker als in den Straßenlärmbgebieten mit etwa rho = 0,24.
Die zusammenfassenden Maße *Gestörtheit tags / nachts* weisen in den Straßenlärmgebieten schwache Korrelationen um rho= 0.17 auf, in den Schienenlärmgebieten ist der Zusammenhang tags mit rho = 0.29 etwas höher ausgeprägt. In der Bewertung der nächtlichen Gestörtheit findet sich mit rho = 0.11 nur ein schwacher Zusammenhang.

Ergebnisse

Tabelle 5-8: Pegel-Reaktions-Korrelationen für Straßenverkehrslärm

<table>
<thead>
<tr>
<th>- Individualdatenniveau -</th>
<th>$L_{A_{eq},24h}$</th>
<th>$L_{A_{eq},tag}$</th>
<th>$L_{A_{eq},Nacht}$</th>
<th>$L_{A_{eq},(6-18h)}$</th>
<th>$L_{A_{eq},(18-22h)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktionsvariablen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belästigung durch Straße</td>
<td>rho 0,220</td>
<td>0,215</td>
<td>0,222</td>
<td>0,206</td>
<td>0,224</td>
</tr>
<tr>
<td></td>
<td>p 0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>n 683</td>
<td>683</td>
<td>683</td>
<td>683</td>
<td>683</td>
</tr>
<tr>
<td>Belästigung durch Straße</td>
<td>rho 0,250</td>
<td>0,244</td>
<td>0,252</td>
<td>0,235</td>
<td>0,254</td>
</tr>
<tr>
<td></td>
<td>p 0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>n 682</td>
<td>682</td>
<td>682</td>
<td>682</td>
<td>682</td>
</tr>
<tr>
<td>Gestörtheit durch Straße</td>
<td>rho 0,177</td>
<td>0,171</td>
<td>0,179</td>
<td>0,159</td>
<td>0,181</td>
</tr>
<tr>
<td></td>
<td>p 0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>n 683</td>
<td>683</td>
<td>683</td>
<td>683</td>
<td>683</td>
</tr>
<tr>
<td>Gestörtheit durch Straße</td>
<td>rho 0,174</td>
<td>0,168</td>
<td>0,176</td>
<td>0,160</td>
<td>0,178</td>
</tr>
<tr>
<td></td>
<td>p 0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>n 683</td>
<td>683</td>
<td>683</td>
<td>683</td>
<td>683</td>
</tr>
<tr>
<td>Schiene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belästigung durch Schiene</td>
<td>rho 0,172</td>
<td>0,170</td>
<td>0,172</td>
<td>0,166</td>
<td>0,172</td>
</tr>
<tr>
<td></td>
<td>p 0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,001</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>n 427</td>
<td>427</td>
<td>427</td>
<td>427</td>
<td>427</td>
</tr>
<tr>
<td>Belästigung durch Schiene</td>
<td>rho 0,333</td>
<td>0,318</td>
<td>0,342</td>
<td>0,301</td>
<td>0,336</td>
</tr>
<tr>
<td></td>
<td>p 0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>n 427</td>
<td>427</td>
<td>427</td>
<td>427</td>
<td>427</td>
</tr>
<tr>
<td>Gestörtheit durch Schiene</td>
<td>rho 0,297</td>
<td>0,288</td>
<td>0,302</td>
<td>0,274</td>
<td>0,299</td>
</tr>
<tr>
<td></td>
<td>p 0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>n 427</td>
<td>427</td>
<td>427</td>
<td>427</td>
<td>427</td>
</tr>
<tr>
<td>Gestörtheit durch Schiene</td>
<td>rho 0,114</td>
<td>0,116</td>
<td>0,109</td>
<td>0,117</td>
<td>0,114</td>
</tr>
<tr>
<td></td>
<td>p 0,018</td>
<td>0,017</td>
<td>0,024</td>
<td>0,016</td>
<td>0,019</td>
</tr>
<tr>
<td></td>
<td>n 427</td>
<td>427</td>
<td>427</td>
<td>427</td>
<td>427</td>
</tr>
</tbody>
</table>

Abbildung 5.5 zeigt die Korrelationen der Belästigungsangaben für die einzelnen Stunden mit den entsprechenden Stundenpegeln aus den Straßen- und den Schienenverkehrslärmgebieten (im Anhang sind die Stunden bezogenen Korrelationen auch tabellarisch aufgeführt). In der Tendenz nimmt die Stärke des Zusammenhangs für beide Lärmarten über den Tag hin zu. In den Morgenstunden sinkt die Stärke des Zusammenhangs zunächst ab, um dann in der frühen Mittagszeit zu steigen. Am engsten ist die Beziehung zwischen 17 und 18 Uhr. Dann findet sich in den Straßenverkehrslärmgebieten ein
Rückgang der Rangkorrelationen. Bezogen auf den Schienenverkehrs lärm sind die deutlich höheren Korrelationskoeffizienten zwischen Pegel und Reaktionen in den Abendstunden zwischen 18 und 22 Uhr auffallend.

Die Ergebnisse zeigen insgesamt, dass, unabhängig von einer Variation des Ausmaßes der Lärmbelästigung im Tagesverlauf bei gleichem Pegel, die Zusammenhangsstärke zwischen Pegel und Reaktionen an sich Veränderungen unterworfen ist. Es ist anzunehmen, dass die akustische Belastung und die durch sie verursachten Belästigungen zu bestimmten Tageszeiten besser erinnert werden als Belastung und Belästigung zu anderen Tageszeiten. Das kann nicht allein dadurch erklärt werden, dass die Pegel-Reaktionskorrelationskoeffizienten dann höher sind, wenn die Befragten sich zu Hause aufhalten. Dies würde u.a. für die Schienengebiete bedeuten, dass die Probanden dort in der Abendzeit zwischen 18-22 Uhr häufiger zu Hause sind als in den Stunden davor und danach bzw. als die Probanden in den Straßengebieten. Das ist jedoch nicht der Fall. Eine mögliche Erklärung ergibt sich weiter unten in Abschnitt 5.3.2 bei Betrachtung der Ausprägung der Lärmbelästigung im Tagesverlauf. Dort wird gezeigt, dass die Tageszeiten mit höherem Pegel-Reaktions-Zusammenhang gleichzeitig auch die Tageszeiten erhöhter ,Lärmsensibilität’, d.h. erhöhter Belästigung bei gleichem Pegel sind.

Abbildung 5.5: Pegel-Reaktions-Beziehungen im Tagesgang
5.3 Ergebnisse der Hauptbefragungsstudie

In diesem und dem folgenden Abschnitt werden die Ergebnisse zur Lärmbelästigung im Tagesverlauf auf Basis der face-to-face-Interviewdaten und akustischen Erhebungen (Hauptbefragungsstudie) dargestellt. Die Ergebnisse der experience-sampling-Studie mittels Handheld-Computer finden sich im Abschnitt 5.4.

5.3.1 Dosis-Wirkungskurven für die Lärmbelästigung tagsüber, abends und insgesamt

Deskriptive Statistiken4 zu den Interviewangaben über die Belästigung und Gestörtheit durch Lärm in den Untersuchungsgebieten finden sich im Anhang. Die nachfolgenden Diagramme in Abbildung 5.6 und Abbildung 5.7 stellen für die Lärmquellen Straße und Schiene die Beziehung zwischen der längerfristigen Belästigung („in den letzten 12 Monaten“) durch Schienen- und Straßenverkehrslärm insgesamt und der Lärmbelastung $L_{Aeq,24h}$ sowie der Lärmbelästigung und dem korrespondierenden Mittelungspegel für die Tageszeitintervalle tagsüber (6-18h) und abends (18-22) dar. Die Lärmbelästigung insgesamt wurde zum einen mittels 5-stufiger Verbalskala und zum anderen mittels 11-stufiger numerischer Skala (0= überhaupt nicht bis 10= äußerst belästigt oder gestört) erhoben. Für die Bestimmung der 12-Stunden-Tageslärmelästigung und der Lärmbelästigung zur Abendzeit wurden die im Interview mittels 5-stufiger Antwortskala erhobenen Stundenbelästigungsurteile für den jeweiligen Bezugszeitraum (tagsüber: 6-18 Uhr, abends: 18-22 Uhr) gemittelt.

4 Häufigkeitsangaben, Mittelwerte, Standardabweichungen und Korrelation der Belästigungs- und Gestörtheitsangaben untereinander.
Abbildung 5.6 Belästigung durch Straßenverkehrslärm tagsüber, abends und insgesamt in Abhängigkeit vom Mittelungspegel des gleichen Bezugszeitraumes (2,5-dB-Pegelklasse, lauteste Fassade)

Abbildung 5.7 Belästigung durch Schienenverkehrslärm tagsüber, abends und insgesamt in Abhängigkeit vom Mittelungspegel des gleichen Bezugszeitraumes (2,5-dB-Pegelklasse, lauteste Fassade)
Zu erkennen ist, dass beim Straßenverkehr bei gleichem Mittelungspegel die Lärmbelästigung insgesamt oberhalb der Lärmbelästigung tagsüber und abends liegt. Die Lärmbelästigung abends weicht dabei kaum von der Lärmbelästigung tagsüber ab.

Beim Schienenverkehr liegt die Lärmbelästigung insgesamt bei gleichem Mittelungspegel ebenfalls über der Lärmbelästigung tagsüber und im unteren Pegelbereich über der Lärmbelästigung abends. Allerdings nähert sich die Lärmbelästigungskurve für die Abendzeit 18-22h den Kurven für die globale Schienenlärmbelästigung oberhalb der Pegelklasse 51,25 dB an, und der Abstand zur Lärmbelästigung tagsüber vergrößert sich. Das deutet darauf hin, dass in dem für den L_{evening} relevanten Tageszeitintervall die Befragten in ihrer Belästigung bei gleichem Mittelungspegel im Vergleich zum Tageszeitraum davor sensibler auf den Schienenverkehrslärm reagieren.

Eine differenziertere – stündliche – Betrachtung der Belästigung im Tagesverlauf sowie die inferenzstatistische Überprüfung dieser Aussage werden in den nachfolgenden zwei Abschnitten dargestellt.

5.3.2 Stündliche Lärmelastigung im Tagesverlauf

In den face-to-face-Interviews gaben die Probanden an, zu welchen Zeiten sie sich besonders stark durch Straßen-bzw. Schienenlärm belästigt fühlen (offene Antwort). Im Anschluss daran wurden sie gebeten, für jede Stunde des Tages (von 5 bis 23 Uhr) die Stärke ihrer Lärmbelästigung auf der 5-stufigen ICBEN-Antwortskala anzugeben.

In den Gebieten mit Schienenlärm gaben mit 146 Personen 34,2 % der 427 Befragten an, zu bestimmten Tageszeiten besonders stark belästigt zu sein. Im Vergleich zu den Straßengebieten fällt zum einen der geringere Prozentsatz an Nennungen auf. Zum anderen sind die Uhrzeiten mit starker Belästigung in den Schienengebieten anders gelagert als in den Straßengebieten: Es gibt nur einen Gipfel, der jedoch weniger stark ausgeprägt ist als in den Straßengebieten und um mehrere Stunden verschoben in den späteren Abendstunden liegt (19-24 Uhr).
Leiser Verkehr – Lärwmwicklung EA 2131 „Lärmbelästigung in Abhängigkeit von der Tageszeit“

Abbildung 5.8: Nennungen starker Belästigung im Tagesverlauf (Mehrfachnennungen möglich)

5 erhoben mittels 5-stufiger Antwortskala mit 1 = „überhaupt nicht belästigt oder gestört“ bis 5 = „äußerst belästigt oder gestört“
Ergebnisse

Abbildung 5.9: Belästigung durch Straßenverkehrslärm im Tagesverlauf

Abbildung 5.10: Belästigung durch Schienenverkehrslärm im Tagesverlauf

Es ist plausibel anzunehmen, dass die bisher dargestellten Variationen der Lärmbelästigung über den Tag Ausdruck tageszeitlich varierender Verkehrsmengen und damit unterschiedlicher Stundenpegel sein können.

Abbildung 5.11 zeigt dagegen getrennt für Straßen- (a) und Schienenverkehrslärm (b) das Ausmaß der stündlichen Belästigung durch Schienen- bzw. Straßenverkehrslärm bei gleicher Geräuschbelastung im Tagesverlauf. Dargestellt ist für jede Lärmquelle und Stunde zwischen 5 und 23 Uhr die mittlere
Lärmbelästigung pro Pegelklasse (Stundenpegel, L_Aeq, 1h; Pegelklassenbreite: 2,5 dB). Jede der Pegelklassen ist dabei durch \(x \leq L_{A_{eq}} < (x+2,5) \text{ dB(A)} \) definiert worden, wobei \(x \) jeweils den unteren Grenzwert darstellt. Die Pegelklassenbildung erfolgte für L_Aeq-Werte ab 35 dB(A). Ein Proband ist über den Tag verteilt unterschiedlichen Stundenpegelklassen zugeordnet worden, je nach dem, welche Belastung zu einer gegebenen Tagesstunde für ihn ermittelt worden ist.

Abbildung 5.11: Lärmbelästigung durch Straßenverkehr (a) bzw. Schienenverkehr (b) in Abhängigkeit von Schallbelastung und Tagesverlauf (Pegelklassen der Breite 2,5 dB(A), 5-stufige verbale Belästigungsskala)
Die Ergebnisse zeigen:

- Beim Straßenverkehr liegen die Tageszeiten mit höherer Lärmbelästigung zwischen 16 und 19 Uhr, beim Schienenverkehr dagegen zwischen 18 und 22 Uhr.

- Weiterhin scheinen bei beiden Lärmequellen, deutlicher aber noch beim Schienenverkehrslärm, Tageszeitunterschiede in der Lärmbelästigung von der Höhe der Geräuschbelastung abzuhängen.

Interessant ist, dass die hier genannten Tageszeitintervalle mit erhöhter Lärmbelästigung gleichzeitig Zeitintervalle darstellen, in denen die Pegel-Reaktions-Beziehung ausgedrückt in Korrelationskoeffizienten höher ist als zu anderen Tagszeiten (vgl. Abschnitt 5.2.3.3). Das könnte Anlass zur Vermutung geben, dass diese Zeitintervalle einen Bezugsrahmen für die Bildung der generellen (tageszeitunabhängigen) Lärmbelästigung durch Schienen- und Straßenverkehr darstellen, weil zu diesen Zeiten besonders störanfällige auf Entspannung und Kommunikation ausgerichtete Aktivitäten ausgeübt werden (zu den Aktivitätenstörungen vgl. Abschnitt 5.4.2).

Die hier dargestellten Belästigungsunterschiede in Abhängigkeit von Tageszeit und Pegel wurden im Rahmen des Allgemeinen Linearen Modells (ALM) inferenzstatistisch überprüft. In das Modell gingen die Faktoren „Tageszeit“ (4x 4-Stunden-Zeitraume) und „Pegelklasse“ (\(L_{A_{eq,\text{tag}}} \); 7-8 Stufen à 5 dB Klassenbreite) ein.

Die den für den \(L_{\text{evening}} \) relevante Abendzeitraum als ein Block übrigen Tageszeitblöcken gleicher Zeitspanne (4 Stunden) gegenüber gestellt werden kann. Für die einzelnen Tageszeitabschnitte wurden aus den Stundenbelästigungsurteilen die Mittelwerte für die in der Analyse betrachteten Tageszeitblöcke bestimmt. Tabelle 5-9 zeigt die Ergebnisse der ALM-Analyse. Danach sind die Haupteffekte der beiden Faktoren „Tageszeit“ und „Pegel“ auf die Lärmbelästigung bei beiden Lärmequellen statistisch signifikant. Weiterhin liegt für die Schiene eine signifikante Wechselwirkung von Pegel und Tageszeit vor; für die Straße gilt dies bei einem festgelegten Signifikanzniveau von \(\alpha=1\% \) nur in der Tendenz. Abbildung 5.12 stellt die Haupteffekte und Wechselwirkung deskriptiv dar.

Die in der Analyse vorgenommene Einteilung nach dem Tages-\(L_{A_{eq}} \) (für 6 bis 22 Uhr) ermöglicht es, die Befragten – über alle Tageszeitintervalle hinweg - jeweils konstant einer Pegelklasse zuzuordnen (und schafft so die Voraussetzung für eine Trennung zwischen „between subjects“- und „within subjects“-Varianzkomponenten); Nachteil dieser für alle Zeitintervalle konstanten Zuordnung zu Pegelklassen ist allerdings, dass die Einteilung der Befragten nach dem Tagesgesamt-\(L_{A_{eq}} \) nicht für alle Befragten jener für die jeweils betrachteten Tageszeitintervalle entsprechen muss.

6 Jede der Pegelklassen ist dabei durch \(x \leq L_{A_{eq}} < (x+5) \) dB definiert worden, wobei \(x \) jeweils den unteren Grenzwert darstellt. Die Pegelklassenbildung erfolgte für \(L_{A_{eq,\text{tag}}} \)-Werte ab 35 dB. Pegelklassen, die mit weniger als 10 Probanden mit Reaktionswerten besetzt sind, wurden aus der Berechnung ausgeschlossen. Bei der Schiene umfassen die Pegelklassenstufen einen Bereich von 35 bis 65 dB, bei der Straße den Bereich von 35 bis 70 dB.
Tabelle 5-9: Ergebnisse der Signifikanzprüfung nach dem Allgemeinen Linearen Modell zum Vergleich der Lärmbelästigung in Abhängigkeit von Tageszeit und Geräuschbelastung getrennt für die Lärmquellen Schiene und Straße

Zweifaktorielle Analyse; Faktor 1: „Tageszeit“ (6-10h; 10-14h; 14-18h; 18-22h); Faktor 2: „Pegel“ (L_{Aeq,tag}), 7 (Schiene) bzw. 8 (Straße) Pegelklassen zu 5 dB(A) für den Bereich zwischen 35 und 65 bzw. 70 dB(A). F= Prüfgröße; p= Überschreitungswahrscheinlichkeit

<table>
<thead>
<tr>
<th>Effekt</th>
<th>Straße (n=629)</th>
<th>Schiene (n=419)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>p <</td>
</tr>
<tr>
<td>Tageszeit</td>
<td>22,86</td>
<td>.000</td>
</tr>
<tr>
<td>Pegel</td>
<td>5,35</td>
<td>.000</td>
</tr>
<tr>
<td>Tageszeit x Pegel</td>
<td>1,66</td>
<td>.036</td>
</tr>
</tbody>
</table>

Abbildung 5.12: Lärmbelästigung durch Straßenverkehrslärm in Abhängigkeit von Pegel und verschiedenen Tageszeitintervallen

Abbildung 5.12: Lärmbelästigung durch Schienenverkehr in Abhängigkeit von Pegel und verschiedenen Tageszeitintervallen
Ergebnisse

Zu erkennen ist, dass bei beiden Lärmquellen erwartungsgemäß die Lärmbelästigung mit zunehmendem Pegel ansteigt. Für die Straße gilt, dass insbesondere bei L_{Aeq,tag}-Pegeln oberhalb von 60 dB die Lärmbelästigung im Nachmittags-Zeitfenster 14-18 Uhr bei gleichem Pegel höher ist als in den anderen Zeitintervallen und am späten Vormittag/Mittag zwischen 10 und 14 Uhr die Lärmbelästigung am geringsten ist. Bei der Schiene ist die Lärmbelästigung insbesondere oberhalb eines L_{Aeq,tag}-Pegels von 50 dB am Abend im Zeitraum von 18-22 Uhr höher als in den Tagesstunden davor.

5.3.3 Bonus/Malus bzw. Zuschläge

Im Beurteilungsmaß L_{den} wird die Abendzeit gegenüber dem Tag mit einem Zuschlag von 5 dB(A) gewichtet, um der für diese Tageszeit angenommenen erhöhten Lästigkeit des Verkehrslärms Rechnung zu tragen. Um prüfen zu können, inwieweit sich Richtung und Höhe des Abendzuschlags in entsprechenden Lärmbelästigungsunterschieden widerspiegeln, wurden getrennt für die Lärmquellen Schiene und Straße quantitative Abschätzungen der Differenz in der Lärmbelästigung zur Abend- und Tageszeit ausgedrückt in Einheiten des Pegels (\Delta L-Schätzungen) vorgenommen.

Für die Schätzungen gelten folgende Bedingungen:

(1) Berücksichtigung von Pegeln \geq 40 dB(A)

In den Studien zur Lästigkeitsdifferenz von Schienen- und Straßenverkehrslärm (Griefahn, Möhler & Schuemer, 1999; Liepert et al., 2000; 2003) in denen die \Delta L-Schätzungen nach Ströhlein verwandt wurde, ist als untere Grenze für die \Delta L-Schätzungen ein Mittelungspegel von 40 dB(A) angesetzt worden. Diese Bedingung wurde auch in den Auswertungen der hier vorliegenden Daten übernommen.

(2) Vermeidung von Extrapolationen

Zur Vermeidung von Extrapolationen über den untersuchten Pegelbereich hinaus wurde die \Delta L-Schätzung für den unteren Pegelbereich in der Weise geschätzt, dass ausgehend von der jeweils oberhalb gelegenen Regressionsgeraden der Abstand nach rechts zur unterhalb gelegenen Regressionsgeraden bestimmt wurde; bei der Schätzung für den oberen Pegelbereich wurde - ausgehend von der jeweils unteren Geraden - der Abstand nach links zur der oberen Geraden
bestimmt. Im mittleren Pegelbereich wurden die Abstände der Geraden zu beiden Seiten – nach links und rechts – berechnet und gemittelt.

Abbildung 5.13 zeigt die Regressionsgeraden für die genannten Belästigungsreaktionen, Bezugspegel und Tageszeiträume. Die daraus vorgenommenen ΔL-Schätzungen sind in Tabelle 5-10 dargestellt.

Tabelle 5-10: ΔL-Werte für die Belästigung durch Straßen- und Schienenverkehrslärm für unterschiedliche Tageszeiträume

<table>
<thead>
<tr>
<th>Quelle</th>
<th>ΔL bei 50 dB</th>
<th>ΔL bei 60 dB</th>
<th>ΔL bei 70 dB</th>
<th>Anzahl Messwertpaare</th>
<th>Mittelwert Pegel Tag</th>
<th>Mittelwert Reaktion Tag</th>
<th>rho Tag</th>
<th>rho Abend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schiene</td>
<td>8,93</td>
<td>13,45</td>
<td>14,03</td>
<td>423</td>
<td>49,84</td>
<td>1,48</td>
<td>0,22</td>
<td>0,31</td>
</tr>
<tr>
<td>Straße</td>
<td>0,98</td>
<td>3,29</td>
<td>5,03</td>
<td>645</td>
<td>55,63</td>
<td>1,90</td>
<td>0,17</td>
<td>0,21</td>
</tr>
</tbody>
</table>

ΔL: Pegeldifferenz der Lärmbelästigung tagsüber (6-18h) und abends (18-22h) - positive Werte: größere Belästigung abends; rho: Spearman-Rangkorrelation

Zu den in der Abbildung 5.13 aufgeführten Konfidenzintervallen für die Reaktionsdifferenzen ist einschränkend zu sagen, dass diese von dem Schätzprogramm auf Basis der Annahme unabhängiger Datensätze ermittelt wurden. Im vorliegenden Fall handelt es sich allerdings um abhängige Datensätze, d.h. Belästigungsurteile einer Person finden sich sowohl in der 'Abend'- als auch 'Tagesregressionsgeraden’ wieder. Demzufolge können die Konfidenzintervalle nicht bzw. allenfalls als grobe Orientierung interpretiert werden. Die ΔL-Werte selbst gelten in ihrer Größe unabhängig von Abhängigkeit oder Unabhängigkeit der Datensätze.
Ergebnisse

<table>
<thead>
<tr>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Straße – Tag (6-18 Uhr) vs. Abend (18-22 Uhr)</td>
</tr>
</tbody>
</table>

YX-Regressionsgeraden zur Dosis-Wirkungsbeziehung beim Straßenverkehrslärm inkl. 95%-Konfidenzintervall der Pegeldifferenz

Regression 1: Dosis-Wirkungsbeziehung Evening 18-22 Uhr
Regression 2: Dosis-Wirkungsbeziehung Day 6-18 Uhr

<table>
<thead>
<tr>
<th>Pegel: L<sub>day</sub> (6-18h); L<sub>evening</sub> (18-22h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

Reaktionen: Mittl. Lärmbelästigung 6-18h;18-22h

Schiene – Tag (6-18 Uhr) vs. Abend (18-22 Uhr)

YX-Regressionsgeraden zur Dosis-Wirkungsbeziehung beim Schienenverkehrslärm inkl. 95%-Konfidenzintervall der Pegeldifferenz

Regression 1: Dosis-Wirkungsbeziehung Evening 18-22 Uhr
Regression 2: Dosis-Wirkungsbeziehung Day 6-18 Uhr

<table>
<thead>
<tr>
<th>Pegel: L<sub>day</sub> (6-18h); L<sub>evening</sub> (18-22h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

Reaktionen: Mittl. Lärmbelästigung Day- Evening

Abbildung 5.13: Regressionen der Lärmbelästigung tagsüber und abends auf die Pegel auf Individualdatenniveau mit Konfidenzintervallen für die Reaktionsdifferenzen – getrennt für Schienen- und Straßenverkehrslärm

Die Ergebnisse der ΔL-Schätzungen zeigen wie auch im vorangegangenen Abschnitt dargestellt, dass tageszeitliche Unterschiede in der Lärmbelästigung mit zunehmendem Pegel an Bedeutung gewinnen. Für beide Lärmquellen Schiene und Straße gilt, dass die ΔL-Werte bei Mittelungspegeln von 60 und 70 dB(A) höher ausfallen, als bei 50 dB(A). Bei der Schiene reichen die ΔL-Werte von knapp 9 bis 14 dB. Für den Schienenverkehrslärm bestätigen demnach die Ergebnisse im Hinblick auf die Belästigungswirkung die Angemessenheit eines Zuschlags für die Abendzeit. Bei der Straße sind die
ΔL-Werte insgesamt geringer und reichen von knapp 1 bis 5 dB(A). Hier spiegelt sich das im vorangegangenen Abschnitt dargestelltes Ergebnis wider, wonach eine erhöhte Belästigung durch Straßenverkehrsflüster wesentlich früher (gegen 16 Uhr) beginnt und diese erhöhte Lärmsensitivität nach Beginn des definierten Abendzeitraumes (gegen 19 Uhr) wieder abklingt. Das heißt, bei der Straße liegen zwar tageszeitlich bedingte Belästigungsunterschiede vor. Diese werden aber durch die Wahl des hier betrachteten Abend-Zeitintervalls und eines hierfür ermittelten Pegelzuschlags (Abendmalus) nicht adäquat abgedeckt. Das würde auch bei Wahl des – in der EU-Umgebungslärmrichtlinie für die Definition der Abendzeit vorgeschlagenen – Zeitintervalls von 19-23 Uhr gelten, da hier die Abendzeit um eine Stunde nach hinten in die Nacht verschoben ist und der für die Straßenverkehrsflüsterbelästigung relevantere Spät-Abend noch weniger Berücksichtigung findet.

5.3.4 Vergleich zweier Formulierungen für die stündlichen Belästigungsangaben

Bezogen auf die stündlichen Beeinträchtigung durch Lärm sollte geprüft werden, ob es zu systematischen Unterschieden in den Antworten führt, wenn in der Frageformulierung einerseits der Begriff „gestört“ und andererseits „gestört oder belästigt“ (Standardformulierung zur Erfassung der Lärmbelästigung nach ICBEN) verwendet wird. Anlass für die Variation in der Frageformulierung ist die Überlegung, dass aufgrund tageszeitlich variierender Aktivitäten die Gestörtheit als Ausdruck der erlebten Interferenz der ausgeübten Aktivität durch den Lärm im Tagesverlauf stärker schwankt als die Belästigung, die ein eher integrierendes Beeinträchtigungsurteil darstellt, welches neben dem Störungsaspekt auch emotionale Bewertungskomponenten enthält (vgl. u.a. Guski, Schuemer & Felscher-Suhr, 1999). Für die Interviews wurden daher jeweils für die Straßen- und Schienengebiete verschiedene Fragebogenversionen eingesetzt, in denen die Frageformulierung zur stündlichen Beeinträchtigung variert wurde. Die Fragebogenversionen B und D (mit Frageformulierung „gestört“) wurden nur in jeweils einem Untersuchungsgebiet pro Lärmsquelle (Straße: Düsseldorf; Schiene: Bönen) bei einem Teil der Probanden eingesetzt, um die Bearbeitung der auf stündliche Lärmbelästigung bezogenen Hauptfragestellung nicht zu gefährden und durch überwiegende Verwendung der ICBEN-Formulierung die internationale Vergleichbarkeit der Untersuchungsergebnisse sicherzustellen zu können. Die für die Probanden in Düsseldorf und Bönen zu verwendenden Fragebogenversionen wurden bereits bei der Stichprobenziehung als Vorgabe für die Interviewer im Zufallsverfahren festgelegt. Die Tabelle 5-11 zeigt die Anzahl der mit den verschiedenen Fragebogenversionen erzielten Interviews.

Tabelle 5-11: Anzahl der Interviews je Fragebogenversion

<table>
<thead>
<tr>
<th>Fragebogenversion</th>
<th>Lärmsquelle</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Straße</td>
<td>Schiene</td>
</tr>
<tr>
<td>A: Straße, F29 "gestört oder belästigt"</td>
<td>632</td>
<td>632</td>
</tr>
<tr>
<td>B: Straße, F29 „gestört“, Düsseldorf</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>C: Schiene, F29 "gestört oder belästigt"</td>
<td>334</td>
<td>334</td>
</tr>
<tr>
<td>D: Schiene, F29 "gestört“, Bönen</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>Gesamt</td>
<td>683</td>
<td>427</td>
</tr>
</tbody>
</table>
Abbildung 5.14 zeigt die mittleren stündlichen Beeinträchtigungsangaben der unterschiedlichen Formulierungen getrennt für die Straßen- und Schienenverkehrslärmgebiete. Es wird deutlich, dass die Urteile sehr nah aneinander liegen; eine Prüfung auf statistisch bedeutsame Unterschiede in Abhängigkeit von der Version der Antwortoptionen hat keine signifikanten Unterschiede zwischen den stündlichen Mittelwerten identifizieren können.

Abbildung 5.14: Vergleich unterschiedlicher Formulierungen der stündlichen Beeinträchtigung durch Lärm in der Hauptbefragung

7 Es wurde eine einfaktorielle Anova mit dem Faktor „Fragebogenversion“ und den stündlichen Belästigungsurteilen als abhängige Variable gerechnet.
5.4 Experience-sampling-Studie: Lärmbelästigung durch Straßen- bzw. Schienenverkehr im Tagesgang

5.4.1 Mittels Handheld-Computer erhobene stündliche Lärmbelästigung

In der vertiefenden experience-sampling-Studie wurden stündlich Angaben zur Lärmbelästigung, zur ausgeübten Tätigkeit und zum Aufenthaltsort sowie ggf. zur Stellung der Fenster zeitnah an drei aufeinander folgenden Tagen mittels Handheld-Computer (bzw. Personal Digital Assistant [PDA]) eingeholt. Abbildung 5.15 zeigt die mittlere Belästigung durch Straßenverkehrslärm in den vier Straßenlärmgebieten im Tagesgang. Auffallend sind

- erhöhte Belästigungswerte in den Morgen- und Vormittagsstunden in drei der vier Gebiete,
- ein weiterer Anstieg in den Nachmittagsstunden,
- der Abfall der Belästigungswerte in den Abendstunden in allen vier Gebieten.

Abbildung 5.15: Stündliche Belästigung durch Straßenverkehrslärm – mittels PDA erhoben

(n\text{Dortmund} = 26; n\text{Bo-Herner Str} = 15; n\text{Düsseldorf} = 28; n\text{Bo-Wasserstr} = 20)
Ergebnisse

Tabelle 5-12: Stündliche akustische Belastung der Probanden der experience-sampling-Studie

<table>
<thead>
<tr>
<th>Tageszeit (h)</th>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dortmund (n = 26)</td>
<td>Bochum/ Hernerstr. (n = 15)</td>
</tr>
<tr>
<td>5 bis 6</td>
<td>53,78</td>
<td>47,88</td>
</tr>
<tr>
<td>6 bis 7</td>
<td>58,92</td>
<td>51,38</td>
</tr>
<tr>
<td>7 bis 8</td>
<td>59,52</td>
<td>51,78</td>
</tr>
<tr>
<td>8 bis 9</td>
<td>59,21</td>
<td>51,18</td>
</tr>
<tr>
<td>9 bis 10</td>
<td>58,81</td>
<td>51,68</td>
</tr>
<tr>
<td>10 bis 11</td>
<td>58,41</td>
<td>51,78</td>
</tr>
<tr>
<td>11 bis 12</td>
<td>58,38</td>
<td>52,38</td>
</tr>
<tr>
<td>12 bis 13</td>
<td>57,48</td>
<td>51,78</td>
</tr>
<tr>
<td>13 bis 14</td>
<td>57,71</td>
<td>51,48</td>
</tr>
<tr>
<td>14 bis 15</td>
<td>57,78</td>
<td>51,78</td>
</tr>
<tr>
<td>15 bis 16</td>
<td>57,61</td>
<td>52,68</td>
</tr>
<tr>
<td>16 bis 17</td>
<td>58,31</td>
<td>51,98</td>
</tr>
<tr>
<td>17 bis 18</td>
<td>57,71</td>
<td>51,78</td>
</tr>
<tr>
<td>18 bis 19</td>
<td>58,62</td>
<td>51,58</td>
</tr>
<tr>
<td>19 bis 20</td>
<td>57,82</td>
<td>51,08</td>
</tr>
<tr>
<td>20 bis 21</td>
<td>58,18</td>
<td>50,48</td>
</tr>
<tr>
<td>21 bis 22</td>
<td>55,62</td>
<td>49,68</td>
</tr>
<tr>
<td>22 bis 23</td>
<td>56,42</td>
<td>49,38</td>
</tr>
<tr>
<td>L.Aeq,Tag 6-22</td>
<td>58,21</td>
<td>51,58</td>
</tr>
</tbody>
</table>

5.4.2 Aktivitäten im Tagesgang und deren Beeinträchtigung durch Lärm

Abbildung 5.16: Stündliche Belästigung durch Schienenverkehrslärm – mittels PDA erhoben
\((n_{Hamm}=27; \ n_{Bönen}=15)\)
<table>
<thead>
<tr>
<th>Straßengebiete</th>
<th>Tageszeit ((\text{Uhr}))</th>
<th>Anzahl</th>
<th>Hausarbeit, Kochen</th>
<th>TV, Musik hören</th>
<th>Sich Unterhalten, Telefonieren</th>
<th>Konzentrationsier, Lesen</th>
<th>Mahlzeit zu sich nehmen</th>
<th>Entspannen, Dösen, Schlafen</th>
<th>Gartenarbeit</th>
<th>Mittlere Belästigung</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-08</td>
<td>103</td>
<td>5,8</td>
<td>7,8</td>
<td>1,0</td>
<td>5,8</td>
<td>32,0</td>
<td>35,9</td>
<td>0</td>
<td>1,91</td>
<td></td>
</tr>
<tr>
<td>08-09</td>
<td>82</td>
<td>12,2</td>
<td>4,9</td>
<td>6,1</td>
<td>11</td>
<td>29,3</td>
<td>19,5</td>
<td>1,2</td>
<td>2,10</td>
<td></td>
</tr>
<tr>
<td>09-10</td>
<td>76</td>
<td>22,4</td>
<td>15,8</td>
<td>9,2</td>
<td>15,8</td>
<td>7,9</td>
<td>7,9</td>
<td>2,6</td>
<td>2,15</td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td>76</td>
<td>27,6</td>
<td>5,3</td>
<td>3,9</td>
<td>17,1</td>
<td>3,9</td>
<td>7,9</td>
<td>5,3</td>
<td>1,84</td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td>70</td>
<td>25,7</td>
<td>7,1</td>
<td>8,6</td>
<td>34,3</td>
<td>8,4</td>
<td>0</td>
<td>5,7</td>
<td>2,00</td>
<td></td>
</tr>
<tr>
<td>12-13</td>
<td>73</td>
<td>20,5</td>
<td>12,3</td>
<td>5,5</td>
<td>26,0</td>
<td>13,7</td>
<td>1,4</td>
<td>9,6</td>
<td>1,71</td>
<td></td>
</tr>
<tr>
<td>13-14</td>
<td>89</td>
<td>23,6</td>
<td>11,2</td>
<td>5,6</td>
<td>18,0</td>
<td>14,6</td>
<td>13,5</td>
<td>3,4</td>
<td>1,81</td>
<td></td>
</tr>
<tr>
<td>14-15</td>
<td>75</td>
<td>14,7</td>
<td>12</td>
<td>14,7</td>
<td>16,0</td>
<td>12,0</td>
<td>20,0</td>
<td>5,3</td>
<td>1,65</td>
<td></td>
</tr>
<tr>
<td>15-16</td>
<td>82</td>
<td>12,2</td>
<td>13,4</td>
<td>9,8</td>
<td>20,7</td>
<td>9,8</td>
<td>12,2</td>
<td>4,9</td>
<td>1,88</td>
<td></td>
</tr>
<tr>
<td>16-17</td>
<td>99</td>
<td>15,2</td>
<td>10,1</td>
<td>9,1</td>
<td>19,2</td>
<td>2,0</td>
<td>11,1</td>
<td>14,1</td>
<td>1,93</td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>92</td>
<td>14,1</td>
<td>20,7</td>
<td>21,7</td>
<td>19,6</td>
<td>3,3</td>
<td>9,8</td>
<td>3,3</td>
<td>1,77</td>
<td></td>
</tr>
<tr>
<td>18-19</td>
<td>136</td>
<td>10,3</td>
<td>21,3</td>
<td>8,1</td>
<td>19,1</td>
<td>17,6</td>
<td>8,1</td>
<td>3,7</td>
<td>1,89</td>
<td></td>
</tr>
<tr>
<td>19-20</td>
<td>167</td>
<td>9,6</td>
<td>27,5</td>
<td>13,2</td>
<td>17,4</td>
<td>18,0</td>
<td>4,8</td>
<td>3,6</td>
<td>1,69</td>
<td></td>
</tr>
<tr>
<td>20-21</td>
<td>162</td>
<td>1,9</td>
<td>53,1</td>
<td>18,5</td>
<td>10,5</td>
<td>8,0</td>
<td>1,2</td>
<td>1,9</td>
<td>1,64</td>
<td></td>
</tr>
<tr>
<td>21-22</td>
<td>165</td>
<td>1,2</td>
<td>61,8</td>
<td>12,1</td>
<td>13,3</td>
<td>2,4</td>
<td>4,2</td>
<td>0,6</td>
<td>1,46</td>
<td></td>
</tr>
<tr>
<td>22-23</td>
<td>123</td>
<td>1,6</td>
<td>61,0</td>
<td>11,4</td>
<td>12,2</td>
<td>0</td>
<td>7,3</td>
<td>0,3</td>
<td>1,31</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schienengebiete</th>
<th>Tageszeit ((\text{Uhr}))</th>
<th>Anzahl</th>
<th>Hausarbeit, Kochen</th>
<th>TV, Musik hören</th>
<th>Sich Unterhalten, Telefonieren</th>
<th>Konzentrationsier, Lesen</th>
<th>Mahlzeit zu sich nehmen</th>
<th>Entspannen, Dösen, Schlafen</th>
<th>Gartenarbeit</th>
<th>Mittlere Belästigung</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-08</td>
<td>52</td>
<td>15,4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28,8</td>
<td>42,3</td>
<td>0</td>
<td>1,44</td>
<td></td>
</tr>
<tr>
<td>08-09</td>
<td>50</td>
<td>18,0</td>
<td>4,0</td>
<td>2,0</td>
<td>12,0</td>
<td>38,0</td>
<td>14</td>
<td>2</td>
<td>1,53</td>
<td></td>
</tr>
<tr>
<td>09-10</td>
<td>41</td>
<td>31,7</td>
<td>2,4</td>
<td>12,2</td>
<td>24,4</td>
<td>9,8</td>
<td>2,4</td>
<td>4,9</td>
<td>1,45</td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td>41</td>
<td>36,6</td>
<td>9,8</td>
<td>7,3</td>
<td>17,1</td>
<td>2,4</td>
<td>2,4</td>
<td>7,3</td>
<td>1,27</td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td>44</td>
<td>34,1</td>
<td>9,1</td>
<td>9,1</td>
<td>6,8</td>
<td>9,1</td>
<td>2,3</td>
<td>13,6</td>
<td>1,35</td>
<td></td>
</tr>
<tr>
<td>12-13</td>
<td>53</td>
<td>28,3</td>
<td>1,9</td>
<td>5,7</td>
<td>7,5</td>
<td>30,2</td>
<td>3,8</td>
<td>9,4</td>
<td>1,92</td>
<td></td>
</tr>
<tr>
<td>13-14</td>
<td>54</td>
<td>16,7</td>
<td>14,8</td>
<td>7,4</td>
<td>13,0</td>
<td>16,7</td>
<td>7,4</td>
<td>3,7</td>
<td>1,57</td>
<td></td>
</tr>
<tr>
<td>14-15</td>
<td>47</td>
<td>6,4</td>
<td>17,0</td>
<td>14,9</td>
<td>17,0</td>
<td>8,5</td>
<td>12,8</td>
<td>6,4</td>
<td>1,57</td>
<td></td>
</tr>
<tr>
<td>15-16</td>
<td>48</td>
<td>8,3</td>
<td>18,8</td>
<td>27,1</td>
<td>8,3</td>
<td>6,3</td>
<td>8,3</td>
<td>6,3</td>
<td>1,41</td>
<td></td>
</tr>
<tr>
<td>16-17</td>
<td>53</td>
<td>20,8</td>
<td>13,2</td>
<td>28,3</td>
<td>9,4</td>
<td>5,7</td>
<td>7,5</td>
<td>9,4</td>
<td>1,66</td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>47</td>
<td>10,6</td>
<td>25,5</td>
<td>23,4</td>
<td>17,0</td>
<td>6,4</td>
<td>8,5</td>
<td>4,3</td>
<td>1,51</td>
<td></td>
</tr>
<tr>
<td>18-19</td>
<td>59</td>
<td>11,9</td>
<td>30,5</td>
<td>16,9</td>
<td>11,9</td>
<td>10,2</td>
<td>5,1</td>
<td>6,1</td>
<td>1,54</td>
<td></td>
</tr>
<tr>
<td>19-20</td>
<td>69</td>
<td>4,3</td>
<td>46,4</td>
<td>13,0</td>
<td>4,3</td>
<td>17,4</td>
<td>2,9</td>
<td>7,2</td>
<td>1,75</td>
<td></td>
</tr>
<tr>
<td>20-21</td>
<td>81</td>
<td>2,5</td>
<td>65,4</td>
<td>12,3</td>
<td>3,7</td>
<td>6,2</td>
<td>4,9</td>
<td>2,5</td>
<td>1,66</td>
<td></td>
</tr>
<tr>
<td>21-22</td>
<td>82</td>
<td>1,2</td>
<td>76,8</td>
<td>9,8</td>
<td>6,1</td>
<td>0</td>
<td>2,4</td>
<td>0</td>
<td>1,45</td>
<td></td>
</tr>
<tr>
<td>22-23</td>
<td>63</td>
<td>3,2</td>
<td>74,6</td>
<td>7,9</td>
<td>9,5</td>
<td>0</td>
<td>3,2</td>
<td>0</td>
<td>1,45</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 5.17 und Abbildung 5.18 zeigen - getrennt für Straßen- und Schienenverkehrslärm - die Lärmbelästigungsurteile im Zusammenhang mit der ausgeübten Tätigkeit zur jeweiligen Stunde.

Abbildung 5.17: Lärmbelästigung durch Straßenverkehrslärm gruppiert nach Nennung der ausgeübten Aktivitäten im Tagesverlauf

Ergebnisse

Abbildung 5.18: Belästigung durch Schienenverkehrslärm bei unterschiedlichen Aktivitäten im Tagesverlauf

Schienenverkehrslärm löst vor allem im Zeitfenster zwischen 12.00 und 15.00 Uhr deutliche Belästigung bei persönlichen und telefonischen Gesprächen aus. In den Abendstunden berichten die Probanden Belästigungen bei passiver Kommunikation (TV sehen, Radio hören), Erholung und Schlaf. Dies scheint bei Betrachtung des Pegelanstiegs in den Abendstunden auch plausibel.

5.5 Vergleich der mit den verschiedenen Methoden erhobenen Belästigungsurteile (retrospektiver versus zeitnahe Erfassung)

Leiser Verkehr – Lärmwirkung EA 2131 „Lärmbelästigung in Abhängigkeit von der Tageszeit”

Abbildung 5.19: Stündliche Belästigungsangaben / Dortmund (Straßengebiet)

Abbildung 5.20: Stündliche Belästigungsangaben / Bochum, Herner Straße (Straßengebiet)
Ergebnisse

Abbildung 5.21: Stündliche Belästigungsangaben / Düsseldorf (Straßengebiet)

Abbildung 5.22: Stündliche Belästigungsangaben / Bochum, Wasserstraße (Straßengebiet)
In allen vier Straßengebieten weisen die Belästigungs-Profillinien denselben zweigipfeligen Verlauf auf; die Belästigung ist - wie bereits beschrieben - in den Morgenstunden und am späten Nachmittag höher als zu den anderen Tageszeiten. Allerdings lässt sich über die Gebiete hinweg keine Systematik bezüglich der Höhe der Urteile erkennen; die Fragebogen-Belästigungsurteile liegen teilweise ober- und teilweise unterhalb der PDA-Belästigungsurteile. Insgesamt ist die Profillinie der Befragungsdaten „glatter“, d.h. Änderungen in der Höhe der Belästigung erstrecken sich über einen

Die Belästigungsprofile der Schienenlärm-Probanden stehen in den beiden Untersuchungsgebieten in umgekehrtem Zusammenhang zueinander: In Hamm (Abbildung 5.23) ist der Verlauf beider Profillinien sehr ähnlich, dies zeigt auch der hochsignifikante Korrelationskoeffizient von Q=.68 (p<.001). Die Belästigungswerte beider Verfahren sind niedrig, weisen aber einen Anstieg in den Abendstunden auf. Im zweiten Untersuchungsgebiet (Bönen, Abbildung 5.24) verlaufen die Profillinien dagegen konträr zueinander, die Fragebogendaten sprechen für einen Anstieg der abendliche Lärmbelästigung, während in den PDA-Daten bis 22.00 Uhr ein Abfall zu erkennen ist, der sich erst in der letzten Eingabetunde noch einmal umkehrt. Statistisch gesehen ist die Beziehung zwischen den beiden Profilen signifikant negativ mit Q= -.54 (p<0.05). Auch der Zusammenhang mit dem Tagesverlauf der akustischen Belastungsmaße (Tabelle 5-14) ist in diesem Gebiet auffällig, da die Befragungswerte mit Q=.03 überhaupt keinen Bezug zum Tagesverlauf des Pegels aufweisen, während der Zusammenhang für die PDA-Daten und dem Verlauf der Stundenmittelungspegel mit Q= .46 ausgeprägt ist. Bei der Interpretation der Q-Werte ist allerdings zu beachten, dass die zugrunde liegende Anzahl der Probanden bezogen auf die Interview- und PDA-Daten sehr unterschiedlich und vor allem die im PDA-Belästigungsprofil enthaltenen Stundenmittelwerte teils auf sehr geringem N basieren.

Tabelle 5-14: Profilkorrelation zwischen Lärmbelästigung im Tagesverlauf und Verlauf des stündlichen Mittelungspegels L_{Aeq,1h} für die verschiedenen Erhebungsmethoden zur Lärmbelästigung (Interview vs. Erhebung mittels PDA)

Q = Koeffizient der Profilkorrelation; p = Irrtumswahrscheinlichkeit

<table>
<thead>
<tr>
<th>Untersuchungsgebiet</th>
<th>Q</th>
<th>p</th>
<th>Untersuchungsgebiet</th>
<th>Q</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Düsseldorf</td>
<td>0,69</td>
<td>0,00</td>
<td>Dortmund</td>
<td>0,69</td>
<td>0,03</td>
</tr>
<tr>
<td>Dortmund</td>
<td>0,53</td>
<td>0,02</td>
<td>Bochum/Wasserstraße</td>
<td>0,46</td>
<td>0,06</td>
</tr>
<tr>
<td>Bochum/Hernerstraße</td>
<td>0,33</td>
<td>0,18</td>
<td>Bochum/Hernerstraße</td>
<td>0,81</td>
<td>0,00</td>
</tr>
<tr>
<td>Hamm</td>
<td>0,35</td>
<td>0,15</td>
<td>Hamm</td>
<td>0,57</td>
<td>0,02</td>
</tr>
<tr>
<td>Bönen</td>
<td>0,03</td>
<td>0,90</td>
<td>Bönen</td>
<td>0,46</td>
<td>0,08</td>
</tr>
</tbody>
</table>

n=16

Tabelle 5-15: Durchschnittliche stündliche Belästigungswerte erhoben im Interview und mittels PDA, allgemeine Lärmbelästigung (Interview) und Belästigung durch die Hauptlärmquelle (Interview)

<table>
<thead>
<tr>
<th>Gebiet</th>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dortmundo</td>
<td>Bochum/Herner Str.</td>
</tr>
<tr>
<td>Stündliche Belästigung (PDA)</td>
<td>1,92 0,74</td>
<td>1,46 0,51</td>
</tr>
<tr>
<td>Stündliche Belästigung (Interview)</td>
<td>1,92 0,93</td>
<td>1,78 0,87</td>
</tr>
<tr>
<td>Belästigung durch Lärm insgesamt (Interview)</td>
<td>2,63 1,08</td>
<td>2,54 1,17</td>
</tr>
<tr>
<td>Belästigung durch Hauptlärmquelle (Schiene/Strasse) (Interview)</td>
<td>2,71 1,18</td>
<td>2,48 1,18</td>
</tr>
</tbody>
</table>

Im Vergleich zu der stündlichen Lärmbelästigung, wie sie im Fragebogen erfasst wurde, zeigt sich auf der Ebene der durchschnittlichen Lärmbelästigung pro Stunde kein erheblicher oder systematischer Unterschied in der Höhe der Urteile, wie oben stehende Tabelle zeigt. Insgesamt liegen aber die stündlichen Angaben aus beiden Untersuchungssteilen unterhalb anderer Belästigungsangaben, wie beispielsweise der im Interview erhobenen Lärmbelästigung insgesamt oder der Lärmbelästigung durch die Hauptlärmquelle.
6. Diskussion

Verschiedene Maßnahmen zur Reduzierung der Lärmbelästigung gerade zur Feierabendzeit ließen sich diskutieren: Angefangen bei temporären Fahrverboten oder (zeitlich begrenzter) City-Maut, über die derzeit auch im Zusammenhang mit der Umsetzung von EU-Vorgaben zur Luftreinhaltung.

In den Schienenverkehrslärmgebieten liegt eine erhöhte Lärmbelästigung in der Abendzeit zwischen 18 und 22 Uhr vor. In diesem Zeitraum ist ein leichter Anstieg des Schienenverkehrs-Geräuschpegels \(L_{A\text{eq}} \), \(L_1 \) bei gleichzeitigem Rückgang des Hintergrundgeräuschpegels \(L_{95} \) festzustellen. Die durch den Schienenverkehr verursachte Geräuschbelastung tritt also am Abend deutlicher hervor, und dies in einem Zeitraum, in dem nach Angaben der Teilnehmer der experience-sampling-Studie überwiegend passive Kommunikation (Fernsehen, Radio/Musik hören) stattfindet. Es ist plausibel, dass hierbei als Einzelereignisse gut wahrnehmbare Geräusche durch den Bahnverkehr besonders stören.

Die höhere Beeinträchtigung in der Abendzeit (18-22 Uhr) entspricht beim Straßenverkehrslärm einem Abendmalus in einem Pegeläquivalent von 1-5 dB und beim Schienenverkehrslärm einem Abendmalus von 9-14 dB (in beiden Fällen je nach absolutem Mittelungspegelbereich im Range von 50 und 70 dB(A)). Alles in allem bestätigen demnach die Ergebnisse – deutlicher noch für den Schienen- als für den Straßenverkehrs lärm – im Hinblick auf die Belästigungswirkung grundsätzlich die eingeführten Zeitintervalle und Ulus, aber nicht ganz adäquat abgedeckt werden. Auch das in der EU-Umgebungslärmrichtlinie für die Definition der Abendzeit vorgeschla genen Zeitintervall von 19 bis 23 Uhr ist als Zeitraum zur Beschreibung erhöhter Lästigkeit des Straßenverkehrslärm nicht geeignet, da hier die Abendzeit definitonisch um eine Stunde nach hinten in die Nacht verschoben ist und der für die Straßenverkehrslärmbelästigung relevante Spätanfang noch weniger Berücksichtigung findet.

Interessant ist, dass diejenigen Tageszeitintervalle, die in dieser Studie als besonders 'lärmempfindlich' Tageszeiten identifiziert wurden, gleichzeitig Zeitintervalle darstellen, in denen die Pegel-Reaktions-Beziehung ausgedrückt in Korrelationskoefizienten höher ist als zu anderen Tageszeiten. Das könnte Anlass zur Vermutung geben, dass diese Zeitintervalle einen Bezugsrahmen für die Bildung der generellen (tageszeitunabhängigen) LärmAustralian für Schienen- und Straßenverkehr darstellen. Wenn dies der Fall ist – so lässt sich argumentieren – dann könnte mit den vorliegenden Ergebnissen der in der 16. BImSchV verankerte so genannte Schienenbonus (als Ausdruck der im Vergleich zum

\[^9\] Sechzehnte Verordnung zur Durchführung des Bundesimmissionsschutzgesetzes
Diskussion

Straßenverkehrs lärm geringeren Lästigkeit des Schienenver kehrlärms) in Frage gestellt sein. Denn für die Abendzeit sprechen die vorliegenden Ergebnisse eher für eine größere Lästigkeit des Schienenverkehrslärms gegenüber dem Straßenverkehrslärm bei gleicher Geräuschbelastung. Und wenn nun die Abendzeit maßgebend für die Bildung des generellen Lärmbelästigungsurteils durch Schienenverkehr ist, dann würde dies auch insgesamt eher einen Schienenmalus nahe legen. Einer solchen Argumentation kann man entgegen halten, dass die auf Schienenverkehrslärm bezogenen Ergebnisse in lediglich zwei Untersuchungsgebieten, gewonnen wurden und Gebietseffekte daher nicht gänzlich ausgeschlossen werden können. Hinzu kommt, dass insbesondere bei der Schiene die oberen Pegelklassen bei den Wohnanschriften der Befragten vergleichsweise gering besetzt waren und auch deshalb die Generalisierung der Aussagen eingeschränkt ist. Inwieweit die Ergebnisse also auf Bahnhöfen mit einer anderen tageszei tlichen Bahnanlagerungsstruktur übertragbar sind, kann an dieser Stelle nicht abschließend entschieden werden; weitere Prüfungen im Rahmen künftiger Forschungsvorhaben sind hierfür erforderlich.

Grundsätzlich werden die Interviewdaten zur stündlichen Lärmbelästigung durch die zeit- und ereignisnähere Erhebung mittels PDA in der ergänzenden experience-sampling-Studie bestätigt. Zwar sind die mittels PDA erhobenen Lärmbelästigungsurteile im Tagesverlauf stärker schwankend und stehen in etwas engerer Beziehung zum Pegelverlauf als die im Interview erhobene Lärmbelästigung. Insgesamt aber sind die mit beiden Erhebungsmethoden erhobenen Urteile im Niveau und Verlauf vergleichbar.
7. Literatur

Anhang

A Soziodemografie

A.1 Wohnsituation: Haushaltsgrößen, Anzahl der Kinder

Tabelle A-1: Mittlere Haushaltsgröße, durchschnittliche Anzahl Erwachsene und Kinder in den Gebieten

<table>
<thead>
<tr>
<th>Gebiet</th>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>s</td>
</tr>
<tr>
<td>Anzahl Personen</td>
<td>2,0</td>
<td>0,9</td>
</tr>
<tr>
<td>Anzahl Erwachsener</td>
<td>1,7</td>
<td>0,6</td>
</tr>
<tr>
<td>Anzahl Kinder</td>
<td>0,2</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Tabelle A-2: Verteilung der Haushaltsgrößen in den Gebieten

<table>
<thead>
<tr>
<th>Gebiet</th>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Single-Haushalte</td>
<td>69</td>
<td>35,0</td>
</tr>
<tr>
<td>2-Personen-Haushalte</td>
<td>83</td>
<td>42,1</td>
</tr>
<tr>
<td>3-Personen-Haushalte</td>
<td>32</td>
<td>16,2</td>
</tr>
<tr>
<td>4-Personen-Haushalte</td>
<td>11</td>
<td>5,6</td>
</tr>
<tr>
<td>5-Personen-Haushalte</td>
<td>2</td>
<td>1,0</td>
</tr>
<tr>
<td>Haushalte mit 6–9 Personen</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabelle A-3: Anzahl der Kinder in den befragten Haushalten

<table>
<thead>
<tr>
<th>Häufigkeiten</th>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Kinder im HH</td>
<td>Dortmund (N=197)</td>
<td>Bochum - Hernerstr (N=145)</td>
</tr>
<tr>
<td>0</td>
<td>165</td>
<td>83,8</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>9,6</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>5,6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1,0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5-7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A.1.2 Geschlecht, Nationalität, Sprache und Alter

Tabelle A-4: Verteilung von Geschlecht, Nationalität und Muttersprache in den untersuchten Gebieten

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>Dortmund (N=198)</td>
<td>Bochum - Hernerstr (N=145)</td>
</tr>
<tr>
<td>weiblich</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>82</td>
<td>41,4</td>
<td>58</td>
</tr>
<tr>
<td>116</td>
<td>58,6</td>
<td>87</td>
</tr>
<tr>
<td>nicht deutsch</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>13</td>
<td>6,6</td>
<td>14</td>
</tr>
<tr>
<td>185</td>
<td>93,4</td>
<td>131</td>
</tr>
<tr>
<td>nicht deutsch</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>21</td>
<td>10,6</td>
<td>25</td>
</tr>
<tr>
<td>177</td>
<td>89,4</td>
<td>120</td>
</tr>
</tbody>
</table>
Tabelle A-5: Altersverteilung, Mittelwert und Standardabweichung in den Gebieten

<table>
<thead>
<tr>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dortmund (N=198)</td>
<td>Bönen (N=204)</td>
</tr>
<tr>
<td>Bochum - Hernerstr (N=145)</td>
<td>Hamm (N=222)</td>
</tr>
<tr>
<td>Düsseldorf (N=177)</td>
<td>Gesamt (N=1109)</td>
</tr>
<tr>
<td>M s</td>
<td>M s</td>
</tr>
<tr>
<td>49,9 19,8 41,7 16,1</td>
<td>54,2 16,8 52,6 15,5</td>
</tr>
</tbody>
</table>

Häufigkeiten

<table>
<thead>
<tr>
<th>Alter</th>
<th>Dortmund (N=198)</th>
<th>Bochum - Hernerstr (N=145)</th>
<th>Düsseldorf (N=177)</th>
<th>Bochum - Wasserstr (N=163)</th>
<th>Bönen (N=204)</th>
<th>Hamm (N=222)</th>
<th>Gesamt (N=1109)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N %</td>
</tr>
<tr>
<td>18-29 Jahre</td>
<td>18,2</td>
<td>18,1</td>
<td>17,7</td>
<td>14,7</td>
<td>14,1</td>
<td>12,8</td>
<td>14,1</td>
</tr>
<tr>
<td>30-39 Jahre</td>
<td>20,2</td>
<td>19,3</td>
<td>19,6</td>
<td>15,2</td>
<td>15,0</td>
<td>13,1</td>
<td>15,2</td>
</tr>
<tr>
<td>40-49 Jahre</td>
<td>13,6</td>
<td>15,9</td>
<td>21,5</td>
<td>25,2</td>
<td>21,6</td>
<td>23,4</td>
<td>22,5</td>
</tr>
<tr>
<td>50-59 Jahre</td>
<td>13,1</td>
<td>11,0</td>
<td>14,7</td>
<td>12,3</td>
<td>19,1</td>
<td>24,8</td>
<td>18,4</td>
</tr>
<tr>
<td>60-69 Jahre</td>
<td>13,6</td>
<td>9,0</td>
<td>17,5</td>
<td>14,7</td>
<td>18,1</td>
<td>18,0</td>
<td>17,5</td>
</tr>
<tr>
<td>70-79 Jahre</td>
<td>10,1</td>
<td>6,2</td>
<td>6,8</td>
<td>12,9</td>
<td>14,2</td>
<td>12,2</td>
<td>11,8</td>
</tr>
<tr>
<td>80-89 Jahre</td>
<td>8,1</td>
<td>2,1</td>
<td>1,7</td>
<td>4,9</td>
<td>6,4</td>
<td>7</td>
<td>5,0</td>
</tr>
<tr>
<td>90-99 Jahre</td>
<td>2,0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,5</td>
<td>0</td>
<td>0,5</td>
</tr>
</tbody>
</table>

A.1.3 Sozioökonomischer Status

Tabelle A-6: Erwerbstätigkeit in den Gebieten

<table>
<thead>
<tr>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dortmund (N=198)</td>
<td>Bönen (N=205)</td>
</tr>
<tr>
<td>Bochum - Hernerstr (N=145)</td>
<td>Hamm (N=222)</td>
</tr>
<tr>
<td>Düsseldorf (N=177)</td>
<td>Gesamt (N=1108)</td>
</tr>
<tr>
<td>Vollzeit (>35h/W)</td>
<td>N %</td>
</tr>
<tr>
<td>(15-34h/W)</td>
<td>N %</td>
</tr>
<tr>
<td>Teilzeit (bis 15h/W)</td>
<td>N %</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>N %</td>
</tr>
<tr>
<td>Nicht erwerbstät. (davon noch nie erwerbstät.)</td>
<td>N %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dortmund (N=198)</th>
<th>Bochum - Hernerstr (N=145)</th>
<th>Düsseldorf (N=177)</th>
<th>Bochum - Wasserstr (N=163)</th>
<th>Bönen (N=205)</th>
<th>Hamm (N=222)</th>
<th>Gesamt (N=1108)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vollzeit (>35h/W)</td>
<td>58 29,3</td>
<td>45 31,0</td>
<td>91 51,4</td>
<td>60 37,3</td>
<td>66 32,2</td>
<td>81 36,5</td>
<td>401 36,2</td>
</tr>
<tr>
<td>Teilzeit (15-34h/W)</td>
<td>32 16,2</td>
<td>23 15,9</td>
<td>28 15,8</td>
<td>18 11,2</td>
<td>24 11,7</td>
<td>30 13,5</td>
<td>155 14,0</td>
</tr>
<tr>
<td>Teilzeit (bis 15h/W)</td>
<td>9 4,5</td>
<td>8 5,5</td>
<td>2 1,1</td>
<td>4 2,5</td>
<td>10 4,9</td>
<td>14 6,3</td>
<td>47 4,2</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>9 4,5</td>
<td>8 5,5</td>
<td>8 4,5</td>
<td>3 1,9</td>
<td>5 2,4</td>
<td>3 1,4</td>
<td>36 3,2</td>
</tr>
<tr>
<td>Nicht erwerbstät. (davon noch nie erwerbstät.)</td>
<td>90 (8) 45,5</td>
<td>61 (13) 42,1</td>
<td>48 (4) 27,1</td>
<td>76 (7) 47,2</td>
<td>100 (9) 48,8</td>
<td>94 (5) 42,3</td>
<td>469 (46) 42,3</td>
</tr>
</tbody>
</table>

* Nennungen unter Sonstiges: beurlaubt, in Ausbildung, Wehrdienst, Zivildienst, Freiwilliges Soziales Jahr
Tabelle A-7: Verteilung der Berufsgruppen in den Gebieten

<table>
<thead>
<tr>
<th></th>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dortmund (N=190)</td>
<td>Bochum-Henererstr (N=131)</td>
</tr>
<tr>
<td></td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>un-/angelernter Arbeiterberuf</td>
<td>23 12,1</td>
<td>24 18,3</td>
</tr>
<tr>
<td>Facharbeiter/ Handwerker</td>
<td>16 8,4</td>
<td>22 16,8</td>
</tr>
<tr>
<td>einfache/ mittlere Angestellte</td>
<td>90 47,4</td>
<td>52 39,7</td>
</tr>
<tr>
<td>leitende Angestellte</td>
<td>15 7,9</td>
<td>10 7,6</td>
</tr>
<tr>
<td>Beamte (untere, mittlere, gehobene Laufbahn)</td>
<td>14 7,4</td>
<td>8 6,1</td>
</tr>
<tr>
<td>höhere Beamte</td>
<td>2 1,1</td>
<td>3 2,3</td>
</tr>
<tr>
<td>selbständige Handwerker</td>
<td>10 5,3</td>
<td>5 3,8</td>
</tr>
<tr>
<td>Geschäfts inhaber/ Unternehmer</td>
<td>2 1,1</td>
<td>1 0,8</td>
</tr>
<tr>
<td>Freiberufler</td>
<td>18 9,5</td>
<td>6 4,6</td>
</tr>
<tr>
<td>selbständige Landwirte</td>
<td>0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Tabelle A-8: Verteilung der Schulabschlüsse in den Gebieten

<table>
<thead>
<tr>
<th></th>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dortmund (N=198)</td>
<td>Bochum-Henererstr (N=144)</td>
</tr>
<tr>
<td></td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>kein Abschluss</td>
<td>3 1,5</td>
<td>4 2,8</td>
</tr>
<tr>
<td>Volksschule/ Hauptschule</td>
<td>57 28,8</td>
<td>51 35,4</td>
</tr>
<tr>
<td>Realschule</td>
<td>42 21,2</td>
<td>20 13,9</td>
</tr>
<tr>
<td>Polytechn. Oberschule</td>
<td>0 0</td>
<td>1 0,7</td>
</tr>
<tr>
<td>FH-Reife/Fachabitur</td>
<td>25 12,6</td>
<td>12 8,3</td>
</tr>
<tr>
<td>Abitur</td>
<td>69 34,8</td>
<td>55 38,2</td>
</tr>
<tr>
<td>anderer Ausbildungsabschluss</td>
<td>2 1,0</td>
<td>1 0,7</td>
</tr>
<tr>
<td>noch SchülerIn</td>
<td>0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>
Tabelle A-9: Verteilung der Berufsabschlüsse in den Gebieten

<table>
<thead>
<tr>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dortmund (N=198)</td>
<td>Hamm (N=222)</td>
</tr>
<tr>
<td>Bönen (N=205)</td>
<td></td>
</tr>
<tr>
<td>Bochum - Hernerstr. (N=143)</td>
<td></td>
</tr>
<tr>
<td>Düsseldorf (N=177)</td>
<td></td>
</tr>
<tr>
<td>Hamm</td>
<td></td>
</tr>
<tr>
<td>Gesamt (N=1106)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>kein Abschluss</td>
<td>25</td>
</tr>
<tr>
<td>noch in berufli. Ausbildung</td>
<td>11</td>
</tr>
<tr>
<td>Lehre</td>
<td>74</td>
</tr>
<tr>
<td>Berufsfachschule</td>
<td>35</td>
</tr>
<tr>
<td>Fachschule</td>
<td>7</td>
</tr>
<tr>
<td>Fachhochschule/ Ingenieurschule</td>
<td>8</td>
</tr>
<tr>
<td>Universität</td>
<td>29</td>
</tr>
<tr>
<td>sonstige Ausbildung</td>
<td>9</td>
</tr>
</tbody>
</table>

Tabelle A-10: Monatliches Nettoeinkommen des Haushalts in Euro

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>0 - 500</td>
<td>5</td>
<td>2,5</td>
<td>6</td>
<td>4,1</td>
<td>4</td>
<td>2,3</td>
<td>2</td>
</tr>
<tr>
<td>500 - 1000</td>
<td>24</td>
<td>12,1</td>
<td>38</td>
<td>26,2</td>
<td>18</td>
<td>10,2</td>
<td>9</td>
</tr>
<tr>
<td>1000 - 1500</td>
<td>35</td>
<td>17,7</td>
<td>26</td>
<td>17,9</td>
<td>16</td>
<td>9,0</td>
<td>26</td>
</tr>
<tr>
<td>1500 - 2000</td>
<td>34</td>
<td>17,2</td>
<td>14</td>
<td>9,7</td>
<td>21</td>
<td>11,9</td>
<td>17</td>
</tr>
<tr>
<td>2000 - 2500</td>
<td>21</td>
<td>10,6</td>
<td>12</td>
<td>8,3</td>
<td>19</td>
<td>10,7</td>
<td>11</td>
</tr>
<tr>
<td>2500 - 3000</td>
<td>13</td>
<td>6,6</td>
<td>9</td>
<td>6,2</td>
<td>12</td>
<td>6,8</td>
<td>20</td>
</tr>
<tr>
<td>> 3000</td>
<td>18</td>
<td>9,1</td>
<td>12</td>
<td>8,3</td>
<td>50</td>
<td>28,2</td>
<td>27</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>48</td>
<td>24,2</td>
<td>28</td>
<td>19,3</td>
<td>37</td>
<td>20,9</td>
<td>51</td>
</tr>
</tbody>
</table>
A2 Belästigung und Gestörtheit durch Straßen-/Schienenverkehrslärm

A.2.1 Belästigung und Gestörtheit in den Untersuchungsgebieten

Tabelle A-11: Durchschnittliche Belästigung und Gestörtheit durch die Hauptlärmquelle

<table>
<thead>
<tr>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dortmund (N=198)</td>
<td>Bochum Henerstr. (N=145)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Belästigung durch Lärm im Wohngebiet allgemein</th>
<th>M</th>
<th>s</th>
<th>M</th>
<th>s</th>
<th>M</th>
<th>s</th>
<th>M</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dortmund</td>
<td>2,63</td>
<td>1,09</td>
<td>2,54</td>
<td>1,17</td>
<td>2,47</td>
<td>1,16</td>
<td>2,63</td>
<td>1,20</td>
</tr>
<tr>
<td>Bochum Henerstr.</td>
<td>2,23</td>
<td>1,09</td>
<td>2,12</td>
<td>1,05</td>
<td>2,42</td>
<td>1,14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Düsseldorf</td>
<td>2,21</td>
<td>1,19</td>
<td>2,04</td>
<td>1,14</td>
<td>2,45</td>
<td>1,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bochum Wasserstr.</td>
<td>2,15</td>
<td>1,06</td>
<td>2,06</td>
<td>1,06</td>
<td>2,07</td>
<td>1,18</td>
<td>2,11</td>
<td>1,23</td>
</tr>
<tr>
<td>Bönen</td>
<td>2,88</td>
<td>1,36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamm</td>
<td>2,12</td>
<td>1,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>2,21</td>
<td>1,19</td>
<td>2,04</td>
<td>1,14</td>
<td>2,45</td>
<td>1,24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gestörtheit tags Schiene bzw. Straße</th>
<th>M</th>
<th>s</th>
<th>M</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dortmund</td>
<td>1,74</td>
<td>1,07</td>
<td>1,69</td>
<td>0,91</td>
</tr>
<tr>
<td>Bochum Henerstr.</td>
<td>1,57</td>
<td>0,93</td>
<td>1,82</td>
<td>1,05</td>
</tr>
<tr>
<td>Düsseldorf</td>
<td>1,62</td>
<td>0,99</td>
<td>1,45</td>
<td>0,87</td>
</tr>
<tr>
<td>Hamm</td>
<td>1,64</td>
<td>0,98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1= überhaupt nicht gestört oder belästigt; 5 = äußerst gestört oder belästigt)

Tabelle A-12: Häufigkeitsverteilung der Lärmbelästigung durch die Hauptlärmquelle in den sechs Gebieten

<table>
<thead>
<tr>
<th>Straßengebiete</th>
<th>Schienengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dortmund (N=198)</td>
<td>Bochum Henerstr. (N=145)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>überhaupt nicht gestört oder belästigt</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dortmund</td>
<td>37</td>
<td>18,7</td>
<td>36</td>
<td>24,8</td>
<td>44</td>
<td>24,9</td>
<td>37</td>
<td>22,7</td>
<td>77</td>
<td>37,6</td>
<td>95</td>
<td>42,8</td>
</tr>
<tr>
<td>Bochum Henerstr.</td>
<td>50</td>
<td>25,3</td>
<td>41</td>
<td>28,3</td>
<td>45</td>
<td>25,4</td>
<td>29</td>
<td>17,8</td>
<td>50</td>
<td>24,4</td>
<td>60</td>
<td>27</td>
</tr>
<tr>
<td>Düsseldorf</td>
<td>58</td>
<td>29,3</td>
<td>38</td>
<td>26,2</td>
<td>46</td>
<td>26</td>
<td>34</td>
<td>20,9</td>
<td>44</td>
<td>21,5</td>
<td>37</td>
<td>16,7</td>
</tr>
<tr>
<td>Bochum Wasserstr.</td>
<td>39</td>
<td>19,7</td>
<td>22</td>
<td>15,2</td>
<td>30</td>
<td>16,9</td>
<td>43</td>
<td>26,4</td>
<td>26</td>
<td>12,7</td>
<td>23</td>
<td>10,4</td>
</tr>
<tr>
<td>Hamm</td>
<td>14</td>
<td>7,1</td>
<td>8</td>
<td>5,5</td>
<td>12</td>
<td>6,8</td>
<td>20</td>
<td>12,3</td>
<td>8</td>
<td>3,9</td>
<td>7</td>
<td>3,2</td>
</tr>
</tbody>
</table>
Tabelle A-13: Belästigung und Gestörtheit durch die Hauptlärmquelle im Lärmquellenvergleich

<table>
<thead>
<tr>
<th>Belästigung durch Lärm allgemein</th>
<th>Straßenlärmbgebiete (N=683)</th>
<th>Schienenlärmbgebiete (N=427)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>s</td>
</tr>
<tr>
<td>Belästigung durch Lärm von Hauptlärmquelle</td>
<td>2,57</td>
<td>1,15</td>
</tr>
<tr>
<td>Gestörtheit tags</td>
<td>2,17</td>
<td>1,12</td>
</tr>
<tr>
<td>Gestörtheit nachts</td>
<td>1,70</td>
<td>1,00</td>
</tr>
</tbody>
</table>

(1= überhaupt nicht gestört oder belästigt; 5 = äußerst gestört oder belästigt)

Tabelle A-14: Häufigkeitsverteilung der Lärmbelästigung durch Hauptlärmquelle

<table>
<thead>
<tr>
<th></th>
<th>Straße (N=683)</th>
<th>Schiene (N=427)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>überhaupt nicht</td>
<td>154</td>
<td>22,5</td>
</tr>
<tr>
<td>etwas</td>
<td>165</td>
<td>24,2</td>
</tr>
<tr>
<td>mittelmäßig</td>
<td>176</td>
<td>25,8</td>
</tr>
<tr>
<td>stark</td>
<td>134</td>
<td>19,6</td>
</tr>
<tr>
<td>äußerst</td>
<td>54</td>
<td>7,9</td>
</tr>
</tbody>
</table>

Tabelle A-15: Belästigung durch Verkehrslärm und weitere Lärmquellen im Vergleich

<table>
<thead>
<tr>
<th>Belästigung durch</th>
<th>Straßengebiete (N=681-683)</th>
<th>Schienengebiete (N=425-427)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>s</td>
</tr>
<tr>
<td>... Lärm von Hauptlärmquelle (Straße/Schiene)</td>
<td>2,7</td>
<td>1,2</td>
</tr>
<tr>
<td>... Lärm allgemein</td>
<td>2,6</td>
<td>1,1</td>
</tr>
<tr>
<td>... Lärm von Nachbarn</td>
<td>1,7</td>
<td>1,0</td>
</tr>
<tr>
<td>... Lärm von Flugverkehr</td>
<td>1,2</td>
<td>0,6</td>
</tr>
<tr>
<td>... Lärm von Nebenlärmquelle (Straße/Schiene)</td>
<td>1,2</td>
<td>0,7</td>
</tr>
<tr>
<td>... Lärm von Kneipen</td>
<td>1,2</td>
<td>0,6</td>
</tr>
<tr>
<td>... Lärm von Kinderspielplätzen</td>
<td>1,2</td>
<td>0,8</td>
</tr>
<tr>
<td>... Lärm von Industrieanlagen</td>
<td>1,1</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Tabelle A-16: Mittelwerte verschiedener Aktivitätenstörungen durch die dominante Lärmquelle

<table>
<thead>
<tr>
<th>Aktivitätenstörungen</th>
<th>Straße (N=584 bis 683)</th>
<th>Schiene (N=415 bis 427)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>s</td>
</tr>
<tr>
<td>Kommunikationsstörungen außen</td>
<td>2,1</td>
<td>1,2</td>
</tr>
<tr>
<td>Kommunikationsstörungen innen</td>
<td>1,5</td>
<td>0,8</td>
</tr>
<tr>
<td>Ruhestörungen außen</td>
<td>2,0</td>
<td>1,2</td>
</tr>
<tr>
<td>Ruhestörungen innen</td>
<td>1,7</td>
<td>1,0</td>
</tr>
<tr>
<td>Schlafstörungen</td>
<td>1,5</td>
<td>0,9</td>
</tr>
</tbody>
</table>
A.2.2 Interkorrelationen zwischen Belästigungs- und Gestörtheitsvariablen

Tabelle A-17: Spearman-Korrelationen von Belästigung und Aktivitätenstörungen durch Straßenverkehrslärm

<table>
<thead>
<tr>
<th>Lärmbelästigung</th>
<th>Aktivitätenstörungen</th>
<th>Straßenverkehr</th>
<th>Schienenverkehr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belästigung durch Straßen- bzw. Schienenverkehrslärm</td>
<td>rho</td>
<td>N 683 626 683 584 683 427 422 426 417 427</td>
<td>N 682 625 682 583 682 427 422 426 417 427</td>
</tr>
<tr>
<td>(5-stufige Verbalskala)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belästigung durch Straßen- bzw. Schienenverkehrslärm</td>
<td>rho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11-stufige numerische Skala)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kommunikation</td>
<td>Ruhe</td>
<td>Schlaf</td>
</tr>
<tr>
<td></td>
<td>innen</td>
<td>außen</td>
<td>innen</td>
</tr>
<tr>
<td>Lärmbelästigung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belästigung durch Straßen- bzw. Schienenverkehrslärm</td>
<td>rho</td>
<td>,57 ,54 ,59 ,55 ,51</td>
<td>,59 ,53</td>
</tr>
<tr>
<td>(5-stufige Verbalskala)</td>
<td>N 683 626 683 584 683 427 422 426 417 427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belästigung durch Straßen- bzw. Schienenverkehrslärm</td>
<td>rho</td>
<td>,63 ,56 ,65 ,57</td>
<td>,55</td>
</tr>
<tr>
<td>(11-stufige numerische Skala)</td>
<td>N 682 625 682 583 682 427 422 426 417 427</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anhang

2.3 Stündliche Belästigung pro Pegelklasse getrennt für Schienen- und Straßenverkehrslärm

Tabelle A-18: Mittelwerte der stündlichen Lärmbelästigung pro 5-dB-Pegelklasse Schiene (lausteste Fassade)

<table>
<thead>
<tr>
<th>Uhrzeit</th>
<th>35 dB (N=9-53)</th>
<th>40 dB (N=41-69)</th>
<th>45 dB (N=60-117)</th>
<th>50 dB (N=73-117)</th>
<th>55 dB (N=38-85)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M s N</td>
</tr>
<tr>
<td>5-6</td>
<td>1,20 0,55 44</td>
<td>1,31 0,70 45</td>
<td>1,37 0,77 62</td>
<td>1,56 0,95 90</td>
<td>1,27 0,65 82</td>
</tr>
<tr>
<td>6-7</td>
<td>1,33 0,71 43</td>
<td>1,33 0,70 61</td>
<td>1,53 0,93 85</td>
<td>1,29 0,66 87</td>
<td>1,68 1,12 63</td>
</tr>
<tr>
<td>7-8</td>
<td>1,17 0,49 42</td>
<td>1,25 0,60 59</td>
<td>1,50 0,90 103</td>
<td>1,39 0,72 102</td>
<td>1,24 0,59 38</td>
</tr>
<tr>
<td>8-9</td>
<td>1,26 0,57 47</td>
<td>1,40 0,77 47</td>
<td>1,33 0,66 60</td>
<td>1,44 0,90 73</td>
<td>1,27 0,59 85</td>
</tr>
<tr>
<td>9-10</td>
<td>1,50 0,71 10</td>
<td>1,15 0,42 41</td>
<td>1,33 0,78 63</td>
<td>1,38 0,78 117</td>
<td>1,32 0,66 85</td>
</tr>
<tr>
<td>10-11</td>
<td>1,19 0,40 16</td>
<td>1,18 0,47 60</td>
<td>1,53 0,94 83</td>
<td>1,26 0,68 114</td>
<td>1,44 0,72 62</td>
</tr>
<tr>
<td>11-12</td>
<td>1,23 0,51 53</td>
<td>1,42 0,79 69</td>
<td>1,38 0,81 107</td>
<td>1,35 0,64 80</td>
<td>1,34 0,61 44</td>
</tr>
<tr>
<td>12-13</td>
<td>1,50 0,71 10</td>
<td>1,17 0,46 47</td>
<td>1,43 0,89 70</td>
<td>1,39 0,50 111</td>
<td>1,33 0,62 85</td>
</tr>
<tr>
<td>13-14</td>
<td>1,44 0,73 9</td>
<td>1,16 0,47 49</td>
<td>1,42 0,81 74</td>
<td>1,38 0,79 110</td>
<td>1,39 0,69 84</td>
</tr>
<tr>
<td>14-15</td>
<td>1,24 0,54 21</td>
<td>1,23 0,52 65</td>
<td>1,51 0,96 101</td>
<td>1,48 0,87 109</td>
<td>1,52 0,95 48</td>
</tr>
<tr>
<td>15-16</td>
<td>1,20 0,49 50</td>
<td>1,46 0,89 68</td>
<td>1,46 0,87 116</td>
<td>1,65 0,97 77</td>
<td>1,47 1,01 38</td>
</tr>
<tr>
<td>16-17</td>
<td>1,21 0,54 48</td>
<td>1,41 0,75 46</td>
<td>1,53 0,97 74</td>
<td>1,63 1,04 99</td>
<td>1,44 0,86 66</td>
</tr>
<tr>
<td>17-18</td>
<td>1,22 0,59 46</td>
<td>1,52 0,92 69</td>
<td>1,52 0,93 117</td>
<td>1,77 1,15 78</td>
<td>1,72 1,02 39</td>
</tr>
<tr>
<td>18-19</td>
<td>1,22 0,55 32</td>
<td>1,35 0,69 68</td>
<td>1,62 0,97 106</td>
<td>1,61 1,02 99</td>
<td>1,89 1,17 45</td>
</tr>
<tr>
<td>19-20</td>
<td>1,80 1,30 5</td>
<td>1,38 0,62 16</td>
<td>1,23 0,51 78</td>
<td>1,63 1,00 112</td>
<td>1,65 1,03 98</td>
</tr>
<tr>
<td>20-21</td>
<td>1,90 1,20 10</td>
<td>1,19 0,47 36</td>
<td>1,52 0,93 67</td>
<td>1,58 0,96 116</td>
<td>1,92 1,16 85</td>
</tr>
<tr>
<td>21-22</td>
<td>1,54 0,88 13</td>
<td>1,27 0,64 48</td>
<td>1,55 0,90 80</td>
<td>1,60 1,01 115</td>
<td>2,01 1,27 73</td>
</tr>
<tr>
<td>22-23</td>
<td>1,33 0,73 46</td>
<td>1,54 0,81 41</td>
<td>1,56 0,96 70</td>
<td>1,73 1,17 103</td>
<td>1,64 1,01 67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uhrzeit</th>
<th>60 dB (N=27-69)</th>
<th>65 dB (N=3-54)</th>
<th>70 dB (N=1-15)</th>
<th>75 dB (N=2)</th>
<th>Insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M s N</td>
</tr>
<tr>
<td>5-6</td>
<td>1,68 1,11 59</td>
<td>1,80 1,12 25</td>
<td>2,64 1,22 14</td>
<td>1,48</td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td>1,63 0,88 27</td>
<td>2,56 1,26 16</td>
<td>1,49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td>1,86 1,26 50</td>
<td>1,88 1,11 26</td>
<td>1,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td>1,51 0,93 69</td>
<td>1,89 1,08 18</td>
<td>1,43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-10</td>
<td>1,41 0,77 41</td>
<td>1,94 1,23 53</td>
<td>1,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td>1,46 0,84 37</td>
<td>1,92 1,26 50</td>
<td>1,43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td>2,00 1,25 48</td>
<td>1,63 0,92 8</td>
<td>1,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-13</td>
<td>1,46 0,76 39</td>
<td>2,00 1,25 52</td>
<td>1,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-14</td>
<td>1,50 0,77 36</td>
<td>1,98 1,28 54</td>
<td>1,46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-15</td>
<td>1,74 1,18 38</td>
<td>2,13 1,26 39</td>
<td>1,53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-16</td>
<td>2,05 1,32 58</td>
<td>1,67 1,15 3</td>
<td>1,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-17</td>
<td>1,85 1,26 59</td>
<td>2,26 1,23 27</td>
<td>1,58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>2,36 1,25 55</td>
<td>1,33 0,82 6</td>
<td>1,66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-19</td>
<td>2,62 1,41 47</td>
<td>1,74 0,96 23</td>
<td>1,69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-20</td>
<td>2,27 1,30 45</td>
<td>2,30 1,33 37</td>
<td>2,34 1,36 32</td>
<td>2,00 1,41 2,00</td>
<td>1,74</td>
</tr>
<tr>
<td>20-21</td>
<td>2,12 1,33 43</td>
<td>2,64 1,40 50</td>
<td>2,17 1,15 18</td>
<td>1,82</td>
<td></td>
</tr>
<tr>
<td>21-22</td>
<td>2,05 1,20 37</td>
<td>2,62 1,35 53</td>
<td>1,83 0,98 6</td>
<td>1,79</td>
<td></td>
</tr>
<tr>
<td>22-23</td>
<td>1,86 1,12 59</td>
<td>2,81 1,33 31</td>
<td>3,50 0,71 2</td>
<td>1,73</td>
<td></td>
</tr>
</tbody>
</table>

80dB: N=0
Tabelle A-19: Mittelwerte der stündlichen Lärmbelästigung pro 5-dB-Pegelklasse Straße (lauteste Fassade)

<table>
<thead>
<tr>
<th>Uhrzeit</th>
<th>35 dB (N=17-50)</th>
<th>40 dB (N=45-84)</th>
<th>45 dB (N=61-102)</th>
<th>50 dB (N=62-97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>s</td>
<td>N</td>
<td>M</td>
<td>s</td>
</tr>
<tr>
<td>5-6</td>
<td>1,6</td>
<td>1,16</td>
<td>50</td>
<td>1,49</td>
</tr>
<tr>
<td>6-7</td>
<td>1,94</td>
<td>1,14</td>
<td>17</td>
<td>1,65</td>
</tr>
<tr>
<td>7-8</td>
<td>2,61</td>
<td>1,61</td>
<td>18</td>
<td>1,68</td>
</tr>
<tr>
<td>8-9</td>
<td>2,05</td>
<td>1,5</td>
<td>22</td>
<td>1,63</td>
</tr>
<tr>
<td>9-10</td>
<td>2,05</td>
<td>1,31</td>
<td>19</td>
<td>1,67</td>
</tr>
<tr>
<td>10-11</td>
<td>1,69</td>
<td>1,05</td>
<td>26</td>
<td>1,73</td>
</tr>
<tr>
<td>11-12</td>
<td>1,5</td>
<td>0,83</td>
<td>24</td>
<td>1,61</td>
</tr>
<tr>
<td>12-13</td>
<td>1,66</td>
<td>1,04</td>
<td>29</td>
<td>1,69</td>
</tr>
<tr>
<td>13-14</td>
<td>1,81</td>
<td>1,24</td>
<td>27</td>
<td>1,61</td>
</tr>
<tr>
<td>14-15</td>
<td>1,79</td>
<td>1,2</td>
<td>28</td>
<td>1,8</td>
</tr>
<tr>
<td>15-16</td>
<td>1,69</td>
<td>1,16</td>
<td>26</td>
<td>1,82</td>
</tr>
<tr>
<td>16-17</td>
<td>1,83</td>
<td>1,37</td>
<td>24</td>
<td>1,88</td>
</tr>
<tr>
<td>17-18</td>
<td>1,93</td>
<td>1,47</td>
<td>27</td>
<td>2,02</td>
</tr>
<tr>
<td>18-19</td>
<td>2,05</td>
<td>1,46</td>
<td>22</td>
<td>2,04</td>
</tr>
<tr>
<td>19-20</td>
<td>1,78</td>
<td>1,28</td>
<td>31</td>
<td>1,85</td>
</tr>
<tr>
<td>20-21</td>
<td>1,52</td>
<td>0,92</td>
<td>25</td>
<td>1,62</td>
</tr>
<tr>
<td>21-22</td>
<td>1,45</td>
<td>0,93</td>
<td>40</td>
<td>1,67</td>
</tr>
<tr>
<td>22-23</td>
<td>1,37</td>
<td>0,82</td>
<td>38</td>
<td>1,75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uhrzeit</th>
<th>55 dB (N=62-105)</th>
<th>60 dB (N=92-145)</th>
<th>65 dB (N=101-158)</th>
<th>70 dB (N=16-135)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>s</td>
<td>N</td>
<td>M</td>
<td>s</td>
</tr>
<tr>
<td>5-6</td>
<td>1,65</td>
<td>1,03</td>
<td>105</td>
<td>1,83</td>
</tr>
<tr>
<td>6-7</td>
<td>1,72</td>
<td>1,13</td>
<td>64</td>
<td>1,89</td>
</tr>
<tr>
<td>7-8</td>
<td>1,88</td>
<td>1,18</td>
<td>66</td>
<td>2,12</td>
</tr>
<tr>
<td>8-9</td>
<td>1,78</td>
<td>1,02</td>
<td>73</td>
<td>2</td>
</tr>
<tr>
<td>9-10</td>
<td>1,72</td>
<td>0,97</td>
<td>71</td>
<td>1,82</td>
</tr>
<tr>
<td>10-11</td>
<td>1,66</td>
<td>0,93</td>
<td>79</td>
<td>1,66</td>
</tr>
<tr>
<td>11-12</td>
<td>1,6</td>
<td>0,91</td>
<td>72</td>
<td>1,71</td>
</tr>
<tr>
<td>12-13</td>
<td>1,63</td>
<td>0,93</td>
<td>68</td>
<td>1,72</td>
</tr>
<tr>
<td>13-14</td>
<td>1,57</td>
<td>0,89</td>
<td>67</td>
<td>1,76</td>
</tr>
<tr>
<td>14-15</td>
<td>1,74</td>
<td>1,03</td>
<td>72</td>
<td>1,72</td>
</tr>
<tr>
<td>15-16</td>
<td>1,79</td>
<td>1,09</td>
<td>67</td>
<td>1,9</td>
</tr>
<tr>
<td>16-17</td>
<td>1,88</td>
<td>1,12</td>
<td>67</td>
<td>1,96</td>
</tr>
<tr>
<td>17-18</td>
<td>2</td>
<td>1,11</td>
<td>71</td>
<td>2,09</td>
</tr>
<tr>
<td>18-19</td>
<td>1,89</td>
<td>1,07</td>
<td>79</td>
<td>2,07</td>
</tr>
<tr>
<td>19-20</td>
<td>1,82</td>
<td>0,96</td>
<td>79</td>
<td>1,93</td>
</tr>
<tr>
<td>20-21</td>
<td>1,786</td>
<td>0,96</td>
<td>68</td>
<td>1,82</td>
</tr>
<tr>
<td>21-22</td>
<td>1,78</td>
<td>0,92</td>
<td>79</td>
<td>1,73</td>
</tr>
<tr>
<td>22-23</td>
<td>1,76</td>
<td>0,9</td>
<td>62</td>
<td>1,75</td>
</tr>
</tbody>
</table>
A.2.4 Lärmbelästigung in verschiedenen Tageszeiträumen gruppiert nach Pegelklasse

Tabelle A-20: Belästigung durch Straßenverkehrslärm: 24h, tagsüber, abends und nachts (Straßengebiete)

<table>
<thead>
<tr>
<th>Bezugszeitraum</th>
<th>24h</th>
<th>24h</th>
<th>Abend: 18-22h</th>
<th>Tags: 6-18h</th>
<th>Nachts: 22-6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezugspegel</td>
<td>LAeq,24h</td>
<td>LAeq,24h</td>
<td>L_{evening} (18-22h)</td>
<td>L_{day} (6-18h)</td>
<td>LAeq, Nacht (6-18h)</td>
</tr>
<tr>
<td>Pegelklasse(^1)</td>
<td>Belästigung gesamt (icben_h; 24h)</td>
<td>N</td>
<td>Std</td>
<td>Belästigung gesamt (icben_h; 24h)</td>
<td>N</td>
</tr>
<tr>
<td>31,25</td>
<td>2,38</td>
<td>8</td>
<td>1,51</td>
<td>1,00</td>
<td>5</td>
</tr>
<tr>
<td>33,75</td>
<td>2,45</td>
<td>11</td>
<td>1,37</td>
<td>2,00</td>
<td>6</td>
</tr>
<tr>
<td>36,25</td>
<td>2,57</td>
<td>23</td>
<td>1,34</td>
<td>2,30</td>
<td>10</td>
</tr>
<tr>
<td>38,75</td>
<td>2,70</td>
<td>23</td>
<td>1,15</td>
<td>2,67</td>
<td>12</td>
</tr>
<tr>
<td>41,25</td>
<td>2,21</td>
<td>43</td>
<td>1,28</td>
<td>2,55</td>
<td>29</td>
</tr>
<tr>
<td>43,75</td>
<td>2,60</td>
<td>35</td>
<td>1,42</td>
<td>2,03</td>
<td>33</td>
</tr>
<tr>
<td>46,25</td>
<td>2,20</td>
<td>46</td>
<td>1,13</td>
<td>2,72</td>
<td>39</td>
</tr>
<tr>
<td>48,75</td>
<td>2,51</td>
<td>45</td>
<td>1,20</td>
<td>2,30</td>
<td>46</td>
</tr>
<tr>
<td>51,25</td>
<td>2,49</td>
<td>37</td>
<td>1,17</td>
<td>2,40</td>
<td>43</td>
</tr>
<tr>
<td>53,75</td>
<td>2,31</td>
<td>35</td>
<td>1,26</td>
<td>2,50</td>
<td>34</td>
</tr>
<tr>
<td>56,25</td>
<td>2,79</td>
<td>43</td>
<td>1,15</td>
<td>2,33</td>
<td>48</td>
</tr>
<tr>
<td>58,75</td>
<td>2,62</td>
<td>61</td>
<td>1,05</td>
<td>2,57</td>
<td>28</td>
</tr>
<tr>
<td>61,25</td>
<td>2,69</td>
<td>48</td>
<td>1,26</td>
<td>2,83</td>
<td>46</td>
</tr>
<tr>
<td>66,25</td>
<td>3,16</td>
<td>115</td>
<td>1,20</td>
<td>3,18</td>
<td>57</td>
</tr>
<tr>
<td>68,75</td>
<td>2,77</td>
<td>43</td>
<td>1,19</td>
<td>3,00</td>
<td>64</td>
</tr>
<tr>
<td>71,25</td>
<td>3,00</td>
<td>109</td>
<td>1,25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Klassenbreite: 2,5 dB; angegeben ist die Pegelklassenmitte

\(^2\) Mittelwert der für den Bezugszeitraum angegebenen stündlichen Belästigungsurteile (Interviewangaben)
<table>
<thead>
<tr>
<th>Bezugszeitraum</th>
<th>24h</th>
<th>24h</th>
<th>Abend: 18-22h</th>
<th>Tags: 6-18h</th>
<th>Nachts: 22-6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezugspegel</td>
<td>$L_{Aeq,24h}$</td>
<td>$L_{Aeq,24h}$</td>
<td>Bezästigung gesamt (cben h; 24h)</td>
<td>Bezästigung gesamt (cben h; 24h)</td>
<td>Bezästigung 6-18h (cben h; 18-22h)</td>
</tr>
<tr>
<td>Pegelklasse</td>
<td>N</td>
<td>Std</td>
<td>N</td>
<td>Std</td>
<td>N</td>
</tr>
<tr>
<td>31,25</td>
<td>2,67</td>
<td>3</td>
<td>1,53</td>
<td>2,33</td>
<td>3</td>
</tr>
<tr>
<td>33,75</td>
<td>2,50</td>
<td>4</td>
<td>0,58</td>
<td>1,50</td>
<td>6</td>
</tr>
<tr>
<td>36,25</td>
<td>1,75</td>
<td>20</td>
<td>1,02</td>
<td>1,21</td>
<td>23</td>
</tr>
<tr>
<td>38,75</td>
<td>1,56</td>
<td>27</td>
<td>0,93</td>
<td>1,28</td>
<td>23</td>
</tr>
<tr>
<td>41,25</td>
<td>2,04</td>
<td>23</td>
<td>1,02</td>
<td>1,92</td>
<td>13</td>
</tr>
<tr>
<td>43,75</td>
<td>1,80</td>
<td>35</td>
<td>0,93</td>
<td>1,56</td>
<td>32</td>
</tr>
<tr>
<td>46,25</td>
<td>2,20</td>
<td>46</td>
<td>1,24</td>
<td>2,00</td>
<td>20</td>
</tr>
<tr>
<td>48,75</td>
<td>2,10</td>
<td>52</td>
<td>1,27</td>
<td>1,78</td>
<td>27</td>
</tr>
<tr>
<td>51,25</td>
<td>2,12</td>
<td>42</td>
<td>1,10</td>
<td>2,20</td>
<td>41</td>
</tr>
<tr>
<td>53,75</td>
<td>2,19</td>
<td>52</td>
<td>1,05</td>
<td>2,00</td>
<td>36</td>
</tr>
<tr>
<td>56,25</td>
<td>1,76</td>
<td>21</td>
<td>1,09</td>
<td>2,16</td>
<td>58</td>
</tr>
<tr>
<td>58,75</td>
<td>1,94</td>
<td>18</td>
<td>1,21</td>
<td>2,14</td>
<td>43</td>
</tr>
<tr>
<td>61,25</td>
<td>2,43</td>
<td>30</td>
<td>1,31</td>
<td>2,13</td>
<td>47</td>
</tr>
<tr>
<td>63,75</td>
<td>2,55</td>
<td>20</td>
<td>1,28</td>
<td>1,41</td>
<td>17</td>
</tr>
<tr>
<td>66,25</td>
<td>3,00</td>
<td>23</td>
<td>1,24</td>
<td>2,16</td>
<td>32</td>
</tr>
<tr>
<td>68,75</td>
<td>2,77</td>
<td>26</td>
<td>1,11</td>
<td>2,38</td>
<td>13</td>
</tr>
<tr>
<td>71,25</td>
<td>2,38</td>
<td>13</td>
<td>1,61</td>
<td>3,33</td>
<td>15</td>
</tr>
<tr>
<td>73,75</td>
<td>3,33</td>
<td>15</td>
<td>0,82</td>
<td>3,33</td>
<td>15</td>
</tr>
</tbody>
</table>

1) Klassenbreite: 2,5 dB; angegeben ist die Pegelklassenmitte
2) Mittelwert der für den Bezugszeitraum angegebenen stündlichen Belästigungsurteilen (Interviewangaben)
A3 Pegel-Reaktions-Korrelationen

A.3.1 Pegel-Reaktionsbeziehungen auf Aggregatdatenniveau

Tabelle A-22: Pegel-Reaktions-Korrelationen für Straßen- und Schienenverkehrslärm

<table>
<thead>
<tr>
<th>Aggregatdatenniveau</th>
<th>Pegelklasse ab 35 dB(A) (Klassenbreite: 2,5 dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straße</td>
<td></td>
</tr>
<tr>
<td>Reaktionsvariablen</td>
<td>L(\text{Aeq,24\text{h}}) L(\text{Aeq,tag (6-22h)}) L(\text{Aeq, Nacht}) L(\text{Aeq, Nacht}) L(_\text{Aeq, Nacht})</td>
</tr>
<tr>
<td>Belästigung durch</td>
<td>rho 0,609 0,663 0,590 0,783 0,853 0,691</td>
</tr>
<tr>
<td>Straßenverkehrslärm</td>
<td>p 0,021 0,007 0,026 0,003 0,011 0,006</td>
</tr>
<tr>
<td>insgesamt (ibcen_h; 5-stufige Verbalskala)</td>
<td>n 14 15 14 12 14 14</td>
</tr>
<tr>
<td>Belästigung durch</td>
<td>rho 0,714 0,739 0,604 0,797 0,604 0,741</td>
</tr>
<tr>
<td>Straßenverkehrslärm</td>
<td>p 0,004 0,002 0,022 0,002 0,022 0,002</td>
</tr>
<tr>
<td>insgesamt (ibcennes; 11-stufige, numerische Skala)</td>
<td>n 14 15 14 12 14 14</td>
</tr>
<tr>
<td>Gestörtheit durch</td>
<td>rho 0,538 0,439 0,389 0,601 0,411 0,530</td>
</tr>
<tr>
<td>Straßenverkehrslärm</td>
<td>p 0,047 0,101 0,169 0,039 0,144 0,051</td>
</tr>
<tr>
<td>tagsüber</td>
<td>n 14 15 14 12 14 14</td>
</tr>
<tr>
<td>Gestörtheit durch</td>
<td>rho 0,497 0,696 0,758 0,608 0,614 0,626</td>
</tr>
<tr>
<td>Straßenverkehrslärm</td>
<td>p 0,070 0,004 0,002 0,036 0,020 0,017</td>
</tr>
<tr>
<td>nachts</td>
<td>n 14 15 14 12 14 14</td>
</tr>
</tbody>
</table>

Schiene	
Reaktionsvariablen	L\(_\text{Aeq,24\text{h}}\) L\(_\text{Aeq,tag (6-22h)}\) L\(_\text{Aeq, Nacht}\) L\(_\text{Aeq, Nacht}\) L\(_\text{Aeq, Nacht}\)
Belästigung durch	rho 0,725 0,682 0,808 0,637 0,795 0,476
Schienenverkehrslärm	p 0,005 0,007 0,001 0,019 0,001 0,118
insgesamt (ibcen_h; 5-stufige Verbalskala)	n 13 14 13 13 13 12
Belästigung durch	rho 0,933 0,952 0,923 0,824 0,951 0,902
Schienenverkehrslärm	p 0,000 0,000 0,000 0,001 0,000 0,000
insgesamt (ibcennes; 11-stufige, numerische Skala)	n 13 14 13 13 13 12
Gestörtheit durch	rho 0,835 0,798 0,852 0,764 0,894 0,888
Schienenverkehrslärm	p 0,000 0,001 0,000 0,002 0,000 0,000
tagsüber	n 13 14 13 13 13 12
Gestörtheit durch	rho 0,666 0,692 0,681 0,481 0,823 0,364
Schienenverkehrslärm	p 0,013 0,006 0,010 0,096 0,001 0,245
nachts	n 13 14 13 13 13 12
A.3.2 Pegel-Reaktionskorrelationen für verschiedene Tageszeiträume

Tabelle A-23: Korrelation zwischen stundenbezogener Belästigung und Verkehrsgeräuschbelastung

r = Produkt-Moment-Korrelation nach Pearson; ρ = Spearman-Rangkorrelation; p = Irrtumswahrscheinlichkeit; n = Anzahl Probanden. Individualdatenniveau: Korrelation zwischen individuellen Reaktionen und Pegeln. Aggregatdatenniveau: Korrelation zwischen mittleren Reaktionen pro Pegelklassenstufe und Pegelklassen.

<table>
<thead>
<tr>
<th></th>
<th>Individualdatenniveau</th>
<th>Aggregatdatenniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Korrelation mit Stunden- L_{An}</td>
<td>Korrelation mit Stunden- Mittelungspegelklasse</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>ρ</td>
</tr>
<tr>
<td>5-6h Belästigung</td>
<td>Korrelation 0,160,176 0,227,198</td>
<td>0,675,0,714 0,715,0,670</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,000,0,000 0,000,0,000</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>584,663 427,427</td>
</tr>
<tr>
<td>6-7h Belästigung</td>
<td>Korrelation 0,152,0,153 0,221,0,193</td>
<td>0,678,0,645 0,618,0,436</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,000,0,000 0,000,0,000</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>683,665 427,427</td>
</tr>
<tr>
<td>7-8h Belästigung</td>
<td>Korrelation 0,134,0,130 0,199,0,163</td>
<td>0,710,0,687 0,622,0,641</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,000,0,001 0,000,0,001</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>682,660 427,427</td>
</tr>
<tr>
<td>8-9h Belästigung</td>
<td>Korrelation 0,143,0,161 0,174,0,137</td>
<td>0,347,0,367 0,640,0,459</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,000,0,000 0,000,0,005</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>663,658 425,425</td>
</tr>
<tr>
<td>9-10h Belästigung</td>
<td>Korrelation 0,147,0,159 0,193,0,152</td>
<td>0,421,0,486 0,584,0,555</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,000,0,000 0,000,0,002</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>665,656 424,424</td>
</tr>
<tr>
<td>10-11h Belästigung</td>
<td>Korrelation 0,105,0,160 0,187,0,153</td>
<td>0,632,0,582 0,545,0,648</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,003,0,000 0,000,0,002</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>660,654 425,425</td>
</tr>
<tr>
<td>11-12h Belästigung</td>
<td>Korrelation 0,138,0,150 0,182,0,149</td>
<td>0,630,0,611 0,584,0,382</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,000,0,000 0,000,0,002</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>658,655 425,425</td>
</tr>
<tr>
<td>12-13h Belästigung</td>
<td>Korrelation 0,131,0,161 0,194,0,163</td>
<td>0,676,0,600 0,563,0,665</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,000,0,000 0,000,0,001</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>656,655 425,425</td>
</tr>
<tr>
<td>13-14h Belästigung</td>
<td>Korrelation 0,138,0,180 0,193,0,169</td>
<td>0,700,0,612 0,766,0,809</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,000,0,000 0,000,0,000</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>654,655 425,425</td>
</tr>
<tr>
<td>14-15h Belästigung</td>
<td>Korrelation 0,123,0,198 0,210,0,194</td>
<td>0,545,0,531 0,857,0,888</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,001,0,000 0,000,0,000</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>655,654 425,425</td>
</tr>
<tr>
<td>15-16h Belästigung</td>
<td>Korrelation 0,126,0,208 0,195,0,172</td>
<td>0,748,0,696 0,761,0,700</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,001,0,000 0,000,0,000</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>655,656 425,425</td>
</tr>
<tr>
<td>16-17h Belästigung</td>
<td>Korrelation 0,138,0,225 0,209,0,177</td>
<td>0,676,0,503 0,759,0,758</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,000,0,000 0,000,0,000</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>655,659 425,425</td>
</tr>
<tr>
<td>17-18h Belästigung</td>
<td>Korrelation 0,163,0,236 0,256,0,238</td>
<td>0,751,0,689 0,878,0,809</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,000,0,000 0,000,0,000</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>654,663 424,424</td>
</tr>
<tr>
<td>18-19h Belästigung</td>
<td>Korrelation 0,176,0,201 0,275,0,244</td>
<td>0,578,0,543 0,756,0,862</td>
</tr>
<tr>
<td></td>
<td>Individualdatenniveau</td>
<td>Aggregatdatenniveau</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Korrelation mit Stunden- L_{eq}</td>
<td>Korrelation mit Stunden-Mittelungspegelklasse</td>
</tr>
<tr>
<td></td>
<td>Straße</td>
<td>Schiene</td>
</tr>
<tr>
<td>Belästigung</td>
<td>r</td>
<td>ρ</td>
</tr>
<tr>
<td></td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>19-20h Belästigung</td>
<td>p</td>
<td>n</td>
</tr>
<tr>
<td>Korrelation</td>
<td>0,199</td>
<td>0,192</td>
</tr>
<tr>
<td></td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>656</td>
<td>665</td>
</tr>
<tr>
<td>20-21h Belästigung</td>
<td>p</td>
<td>n</td>
</tr>
<tr>
<td>Korrelation</td>
<td>0,222</td>
<td>0,207</td>
</tr>
<tr>
<td></td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>663</td>
<td>667</td>
</tr>
<tr>
<td>21-22h Belästigung</td>
<td>p</td>
<td>n</td>
</tr>
<tr>
<td>Korrelation</td>
<td>0,188</td>
<td>0,198</td>
</tr>
<tr>
<td></td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>665</td>
<td>668</td>
</tr>
<tr>
<td>22-23h Belästigung</td>
<td>p</td>
<td>n</td>
</tr>
<tr>
<td>Korrelation</td>
<td>0,174</td>
<td>0,180</td>
</tr>
<tr>
<td></td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>669</td>
<td>670</td>
</tr>
<tr>
<td>Zusammenfassung</td>
<td>Median</td>
<td>p</td>
</tr>
<tr>
<td>Korrelationswerte</td>
<td>0,145</td>
<td>0,180</td>
</tr>
<tr>
<td></td>
<td>0,105</td>
<td>0,130</td>
</tr>
<tr>
<td></td>
<td>0,222</td>
<td>0,236</td>
</tr>
</tbody>
</table>
A4 Beschreibung ausgewählter Untersuchungsgebiete

A.4.1 Dortmund-Innenstadt: Ruhrallee (B 54)

<table>
<thead>
<tr>
<th>Straßen rechts der B54</th>
<th>Nummer</th>
<th>Straßen links der B54</th>
<th>Nummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruhrallee (B 54)</td>
<td>51,53-62,64-70,72,74,76,78-80 (ca. 150 WE; Nr 79: 61 dB)</td>
<td>das erste ab B1: Nr 95, 87-95 = 70dB, ca. 25 WE</td>
<td></td>
</tr>
<tr>
<td>Dresdnerstr</td>
<td>48-51, 49a, 53,55,57,59,61 (ca. 30 WE)</td>
<td>Nr 57: 60 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49-95, 87-95 = 70dB, ca. 25 WE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leipzigerstr</td>
<td>es gibt nur ungerade 1-11</td>
<td>Markgrafenstr. (Chemnitzer-B54)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>je 3 Stockwerke 7:54dB (9:45 Uhr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landgrafenstr. (B54-Meißner)</td>
<td>56, 58, 79,81,83,85,87</td>
<td>Markgrafenstr. (Meißner – Knappenberg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gg.über Schule 81: 60dB 10 Uhr, 62 dB 17:20 Uhr 4 Stockwerke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landgrafenstr. (B54-Chemnitzer)</td>
<td>101, 103, 105, 122, 124 (ca 35 WE)</td>
<td>Wilhelm-Crüwel-Str.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>103: 62dB, 117: 60dB (=Ecke Chemnitzer, 10 Uhr) je 4 Stockwerke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lärmpegel</td>
<td>60 – 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl WE:</td>
<td>466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flächenutzung:</td>
<td>Mischgebiet. Wohnen, Gewerbe, Gastronomie, Einzelhandel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sozialstruktur:</td>
<td>mittel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Störeinflüsse:</td>
<td>Ampeln an B 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Besonderheiten:</td>
<td>Zwei unterschiedliche Straßen! Jedoch B 54 allein > 250 WE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ruhrallee (B 54) – Wohneinheiten

<table>
<thead>
<tr>
<th>Ruhrallee (= B 54) (ab Landgrafen – Saarlandstr)</th>
<th>Ruhrallee (= B 54) (ab B1 - Landgrafen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 79 (je 8 WE)</td>
<td>87, 89, 91, 93, 95 (gesamt 25 WE)</td>
</tr>
<tr>
<td>54 (8 WE), 56 (4 WE), 58 (8 WE), 60 (5 WE), 62 (9 WE), 64 (8 WE), 66, 68, 70 (je 4 WE)</td>
<td>70 dB (Nr. 87)</td>
</tr>
<tr>
<td>72 (6 WE) 74, 76 (je 5 WE) 78, 80 (je 8 WE)</td>
<td></td>
</tr>
<tr>
<td>61 dB (Nr. 79)</td>
<td></td>
</tr>
</tbody>
</table>

Landgrafenstr. (B54 – Chemnitzer)

<table>
<thead>
<tr>
<th>Landgrafenstr. (B54 – Meißen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101, 103, 122, 124 (Summe: 35-40 WE)</td>
</tr>
<tr>
<td>62 dB (Nr 103)</td>
</tr>
<tr>
<td>60/61 dB (Nr 117)</td>
</tr>
</tbody>
</table>

Markgrafenstr (B 54 - Meißen)

<table>
<thead>
<tr>
<th>Markgrafenstr (Chemnitzer – B 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 (2 WE)</td>
</tr>
<tr>
<td>65 dB (Ecke Meißen)</td>
</tr>
<tr>
<td>60 dB (Nr. 56)</td>
</tr>
</tbody>
</table>

Markgrafenstr (Chemnitzer – B 54)

<table>
<thead>
<tr>
<th>Markgrafenstr (Meißen – Knappenberg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>49, 51, 55, 50, 52, 54, 56</td>
</tr>
<tr>
<td>60 dB (Nr 81), gg.über Gewerbe, Schule</td>
</tr>
</tbody>
</table>

Leipzigerstr

<table>
<thead>
<tr>
<th>Leipzigerstr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 3, 5, 7, 9, 11 (3 Stock über EG)</td>
</tr>
<tr>
<td>54 dB (Nr. 7)</td>
</tr>
</tbody>
</table>

Wilhelm-Crüwell Str

<table>
<thead>
<tr>
<th>Wilhelm-Crüwell Str</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (15 WE)</td>
</tr>
<tr>
<td>61 dB (Nr 20) oben Lärm von B1 und B 54, unten geschützt durch Häuser: nur Lärm von B54</td>
</tr>
<tr>
<td>60 dB (Nr 57)</td>
</tr>
</tbody>
</table>

Meißner Str. (Markgrafen- Landgraf)

<table>
<thead>
<tr>
<th>Meißner Str. (Markgrafen – Landgraf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35, 37, 39, 41, 43, 45, 49</td>
</tr>
<tr>
<td>50 dB (Nr. 43)</td>
</tr>
</tbody>
</table>

Meißner Str. (Markgrafen – B1)

<table>
<thead>
<tr>
<th>Meißner Str. (Markgrafen – B1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51, 53, 55, 66, 68</td>
</tr>
<tr>
<td>50 dB (Nr 51)</td>
</tr>
</tbody>
</table>

Lärmpiegel in dB (A):

| 50 – 80 |
| 466 |

Flächennutzung:

| Mischgebiet, Wohnen, Gewerbe, Gastronomie, Einzelhandel |

<table>
<thead>
<tr>
<th>Sozialstruktur:</th>
<th>mittel</th>
</tr>
</thead>
</table>

| Störeinflüsse: | Ampeln an B 54 |

| Besonderheiten: | |

Lärmpegel in dB (A): 60 – 80

Anzahl WE: 466

Flächennutzung: Mischgebiet, Wohnen, Gewerbe, Gastronomie, Einzelhandel

Sozialstruktur: mittel

Störeinflüsse: Ampeln an B 54

Besonderheiten:
A.4.2 Bochum Herner Straße

Kirche an der Feldsieper Str. begrenzt Lärmbereich

<table>
<thead>
<tr>
<th>Straßen</th>
<th>Nummern</th>
<th>Straßen</th>
<th>Nummern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links der Herner Str., von Norden (Autobahn) nach Süden</td>
<td></td>
<td>Rechts der Herner Str., von Norden nach Süden</td>
<td></td>
</tr>
<tr>
<td>Hernerstraße</td>
<td>ungerade: 67 – 141; 149-159</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gerade: 72 – 138; 156, 158, 160, 124a, 124b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feldsieper Str. (bis zur Kirche)</td>
<td>146-130</td>
<td>Agnesstraße</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>143-133</td>
<td></td>
<td>2,4</td>
</tr>
<tr>
<td>Schmächtigstr. (Anfang von Herner Str. aus)</td>
<td>1a, 1b, 1-7</td>
<td>Freiligrath-Straße (bis Kreuzung Wielander Str.)</td>
<td>50-54</td>
</tr>
<tr>
<td></td>
<td>6,8,10,12</td>
<td></td>
<td>53,55</td>
</tr>
<tr>
<td>Emscherstr (vorderer Teil von Herner Str. aus)</td>
<td>21-33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22-32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hermannstr.</td>
<td>nur notfalls dann ganz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westhofstr. (vorderer Teil von Herner Str. aus)</td>
<td>nur ungerade: 1-7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lärmpiegel in dB (A):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl WE:</td>
</tr>
<tr>
<td>Flächennutzung:</td>
</tr>
<tr>
<td>Sozialstruktur:</td>
</tr>
<tr>
<td>Störeinflüsse:</td>
</tr>
<tr>
<td>Besonderheiten:</td>
</tr>
</tbody>
</table>
A.4.3 Bochum Wasserstraße

<table>
<thead>
<tr>
<th>Straßen</th>
<th>Nummern</th>
<th>Straßen</th>
<th>Nummern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stensstr.</td>
<td>68, 70, 70a, 72, 74</td>
<td>Am Dieckmannshof</td>
<td>11-15</td>
</tr>
<tr>
<td>Barlachweg</td>
<td>1-5</td>
<td>2-6</td>
<td>An der Bredenbeck</td>
</tr>
<tr>
<td>Am Waldschlösschen</td>
<td>1, 3, 5</td>
<td>gerade: 2-54</td>
<td></td>
</tr>
<tr>
<td>Teil der Hasenkampstr.</td>
<td>21-35</td>
<td>8-16</td>
<td></td>
</tr>
<tr>
<td>Am Gösepötken</td>
<td>1-11</td>
<td>6-12</td>
<td></td>
</tr>
<tr>
<td>Franziskusstr. (über beide Seiten)</td>
<td>31, 33, 37-41a</td>
<td>36-42; 46-50</td>
<td></td>
</tr>
</tbody>
</table>

Lärmpegel in dB (A):
- **Anzahl WE:** Eher wenig, lockere Bebauung
- **Flächennutzung:** Überwiegend Wohnfunktion, Einzelhandel, Gastronomie
- **Sozialstruktur:** Mittel
- **Störeinflüsse:** Ampeln, Bushaltestellen
- **Besonderheiten:** -
A.4.4 Düsseldorf Prinz-Georg-Straße

<table>
<thead>
<tr>
<th>Straßenzüge:</th>
<th>Straßen</th>
<th>Nummern</th>
<th>Straßen</th>
<th>Nummern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prinz-Georg-Straße</td>
<td>3-89</td>
<td>34-106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rechte Seite von oben nach unten</td>
<td></td>
<td></td>
<td>Linke Seite von oben nach unten</td>
<td></td>
</tr>
<tr>
<td>Wolkerstraße</td>
<td>ungerade: 1-7</td>
<td>gerade: 2-10</td>
<td>Winkelsfelderstraße</td>
<td>10-28</td>
</tr>
<tr>
<td>Benedikt.Schmittmann-Str.</td>
<td>gerade: 2-14</td>
<td>ungerade: 3-9</td>
<td>Parkstraße</td>
<td>ungerade: 59-67a</td>
</tr>
<tr>
<td>Camphausenstr.</td>
<td>gerade: 2-12</td>
<td>ungerade: 1-7</td>
<td>Franklinstraße</td>
<td>nur gerade: 14-18</td>
</tr>
</tbody>
</table>

Lärmpegel in dB (A):
- **Anzahl WE:** Evtl. zu wenig
- **Flächennutzung:** Allgemeines Wohngebiet
- **Sozialstruktur:**
- **Störeinflüsse:**
- **Besonderheiten:**

![Lärmkarte für Prinz-Georg-Str.](image-url)
A.4.5 Bönen (Schienengebiet)

<table>
<thead>
<tr>
<th>Lärmpiegel in dB (A):</th>
<th>tags: 55-65 (nachts gleiche Werte laut LUA-Karten)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>stdl. 6 Personenzüge</td>
</tr>
<tr>
<td></td>
<td>(1996 in Aufweck: 126 Vorbeifahrt, Nacht)</td>
</tr>
<tr>
<td></td>
<td>61 Vorbeifahrten 24 h</td>
</tr>
<tr>
<td></td>
<td>Sv-/Gz-Anteil: 58% tags, 87% nachts</td>
</tr>
<tr>
<td>Anzahl WE:</td>
<td>500</td>
</tr>
<tr>
<td>Flächennutzung:</td>
<td>ländl. Wohngebiet</td>
</tr>
<tr>
<td>Störeinflüsse:</td>
<td>Industrielärm nachts und tags gleich: 45-50 dB in Nordböggerstr, Im Hasenwinkel; 40-45 dB im gesamten nördlichen Stadtgebiet bis auf Höhe der Rettungswacht in der Bachstraße</td>
</tr>
<tr>
<td>Fluglärm:</td>
<td>keiner</td>
</tr>
<tr>
<td>Straßenverkehr:</td>
<td>nachts: 49-54 dB: Bahnhofstraße (gesamte Straße, in der ganzen Stadt)</td>
</tr>
<tr>
<td></td>
<td>47-49 dB: Nordböggerstr, Im Hasenwinkel, <45 im restlichen Stadtgebiet</td>
</tr>
<tr>
<td>Besonderheiten:</td>
<td>Andere Lärmquellen:</td>
</tr>
<tr>
<td></td>
<td>Schacht Königsborn (stillgelegt)</td>
</tr>
<tr>
<td></td>
<td>Industriegebiet an der A 2</td>
</tr>
<tr>
<td></td>
<td>Sportplatz an der Bachstraße</td>
</tr>
<tr>
<td></td>
<td>Bauhof an der Bachstraße</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Straße</th>
<th>db Bahn tags</th>
<th>Hausnummern</th>
<th>Straße</th>
<th>Hausnummern</th>
<th>db Bahn tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körnerstraße</td>
<td>55-60</td>
<td>13- Ende 12- Ende</td>
<td>Papenbuschstr</td>
<td>13-aufsteigend 14- aufsteigend</td>
<td>55-60</td>
</tr>
<tr>
<td>Rexestr.</td>
<td>60-65</td>
<td>komplett</td>
<td>Leinkampstr</td>
<td>komplett</td>
<td>55-60</td>
</tr>
<tr>
<td>Eicholzplatz</td>
<td>55-60</td>
<td>komplett (seniorenheim?)</td>
<td>Wideystr</td>
<td>1-37 2-30</td>
<td>55-60</td>
</tr>
<tr>
<td>Eicholzstr</td>
<td>50-60</td>
<td>1-11 2-20a</td>
<td>Gartenstr</td>
<td>1-9</td>
<td>50-60</td>
</tr>
<tr>
<td>An dem Holzkamp</td>
<td>55-60</td>
<td>komplett</td>
<td>Friedensplatz</td>
<td>komplett</td>
<td>60-65</td>
</tr>
<tr>
<td>Kampstr</td>
<td>55-60</td>
<td>komplett</td>
<td>Borgholzstr</td>
<td>20-28</td>
<td></td>
</tr>
<tr>
<td>Am Peterskamp</td>
<td>55-60</td>
<td>komplett</td>
<td>Albert-Schweizer-Platz</td>
<td>komplett</td>
<td></td>
</tr>
</tbody>
</table>
A.4.6 Hamm-Westtünnnen (Schienengebiet)

<table>
<thead>
<tr>
<th>Straße</th>
<th>Hausnummern</th>
<th>Straße</th>
<th>Hausnummern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orffstraße</td>
<td>komplett</td>
<td>Glückstraße</td>
<td>komplett</td>
</tr>
<tr>
<td>Silcher Straße</td>
<td>22-28, 46</td>
<td>Tizianstraße</td>
<td>komplett</td>
</tr>
<tr>
<td></td>
<td>25, 39, 47, 49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knabstraße</td>
<td>komplett</td>
<td>Spitzwegstraße</td>
<td>komplett</td>
</tr>
<tr>
<td>Heideweg</td>
<td>90-104</td>
<td>Schlaunstraße</td>
<td>3, 5, 9, 11</td>
</tr>
<tr>
<td></td>
<td>89-91</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>von-Thünen-Straße</td>
<td>nur gerade: 2-76</td>
<td></td>
<td>10-Ende</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-Ende</td>
</tr>
<tr>
<td>Telemannstraße</td>
<td>komplett</td>
<td>Schinkelstraße</td>
<td>komplett</td>
</tr>
<tr>
<td>Kolbestraße</td>
<td>komplett</td>
<td>Dierhagenweg</td>
<td>1-17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-16</td>
</tr>
<tr>
<td>Menzelstraße</td>
<td>1-15</td>
<td>Unterer Heideweg</td>
<td>142, 144, 158</td>
</tr>
<tr>
<td></td>
<td>10-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rauchstraße</td>
<td>1</td>
<td>Dietrich-Bonhoeffer-Straße</td>
<td>4, 6, 8</td>
</tr>
<tr>
<td>Nicolaistraße</td>
<td>komplett</td>
<td>Verdstraße</td>
<td>2, 4, 6</td>
</tr>
<tr>
<td>Südfeldweg</td>
<td>nur gerade: 2-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl WE:</td>
<td>430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flächennutzung:</td>
<td>ländl. Wohngebiet, z.T. Einzelhandel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sozialstruktur:</td>
<td>überwiegend mittel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Störeinflüsse:</td>
<td>mäßiger Straßenlärm (von Thünen- und Menzelstr.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Besonderheiten:</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gebiet „Hamm-Westtunnenn“, Bereich Menzelstr. / von-Thünen-Str.
A5 Probandenanschreiben (Muster)
Sehr geehrte Frau Muster,

Uns interessiert Ihre Meinung zur Situation in Ihrer Wohnumgebung!

Für das Gelingen der Studie ist jeder Einzelne wichtig. Daher bitten wir Sie um Ihre Unterstützung!

Wir freuen uns über Ihre Teilnahme und danken Ihnen schon im Voraus für Ihr Entgegenkommen. Sollten Sie noch Fragen haben, so wenden Sie sich bitte an:

Ruhr-Universität Bochum
Frau Schmaus

Stadtverwaltung Musterstadt
Herr/Frau Stadtmüller

Tel.: 0234 / 70 99 23-34
Tel.: xxx

Mit freundlichen Grüßen

Wissenschaftliche Befragung zu Wohn- und Lebensbedingungen
Bochum, den xx.yy.2004

Prof. Dr. Rainer Guski,
Diplom-Psychologin Inka Schmaus
D-44780 Bochum
Gebäude: GAFO 02/385
Telefon: +49(0)234 709923-34
Telefax: +49(0)234 709923-31
E-Mail: Inka.Schmaus@ruhr-uni-bochum.de

Fakultät für Psychologie
Kognitions- und Umweltpsychologie

Ruhr-Universität Bochum, Prof. Dr. Rainer Guski,
Fakultät für Psychologie, D- 44780 Bochum

Frau
Martha Muster
Musterstraße 13
33333 Musterstadt
Anhang

Professor Dr. Rainer Guski & Dipl.-Psych. Inka Schmaus
Formulierung bei stündlicher Belästigung/Gestörtheit durch Straßenverkehrslärm: „gestört oder belästigt“
A7 Interview-Fragebogen für Straßengebiete - Version B

Formulierung bei stündlicher Belästigung/Gestörtheit durch Straßenverkehrslärm: „gestört“
A8 Interview-Fragebogen für Schienengebiete - Version C

Formulierung bei stündlicher Belästigung/Gestörtheit durch Schienenverkehrslärm:
„gestört oder belästigt“
A9 Interview-Fragebogen für Schienengebiete - Version D

Formulierung bei stündlicher Belästigung/Gestörtheit durch Schienenverkehrslärm: „gestört“
A10 Elektronischer PDA-Kurzfragebogen

1

Zum Beginnen der Befragung bitte „weiter“ antippen.

2

weiter
Wie stark haben Sie sich in der letzten Stunde durch Lärm vom Straßenverkehr gestört oder belästigt gefühlt?

- äußerst
- stark
- mittelmäßig
- etwas
- überhaupt nicht

Wo haben Sie sich in der letzten Stunde überwiegend aufgehalten?

- im Haus / Wohnung
- Balkon / Garten / ums Haus
- unterwegs / außer Haus

Was haben Sie in der letzten Stunde überwiegend gemacht?

- Haus-/Gartenarbeit/Kochen
- Fernsehen / Musik hören
- entspannen/dösen/schlafen
- mich unterhalten/telefonieren
- konzentrieren / lesen
- Mahlzeit zu sich nehmen
- Sonstiges
Wie war die überwiegende Fensterstellung in der letzten Stunde?

- zurück
- weiter

geöffnet
gekippt
geschlossen

Vielen Dank für die Beantwortung der Fragen. Tippen Sie auf „weiter“ und schalten Sie das Gerät danach aus.

- zurück
- weiter
1. Abbildung 4.1: Verkehrsmengendaten der Straßenverkehrslärmgebiete 19
2. Abbildung 4.2: Exemplarische Anordnung von Dauermesspunkt und Stichproben in einem Straßengebiet .. 22
3. Abbildung 5.1a und b: Pegel-Probanden-Verteilungen getrennt nach Quelle (Schiene bzw. Straße) .. 39
4. Abbildung 5.2a und b: Pegel-Probanden-Verteilungen für lauteste Fassade getrennt nach einzelnen Gebieten .. 40
5. Abbildung 5.3a bis f: Tageszeitlicher Verlauf der verschiedenen Pegelmaße für die einzelnen Gebieten .. 42
6. Abbildung 5.4: Pegeldarstellung und örtliche Probandenverteilung im Untersuchungsgebiet Dortmund ... 47
7. Abbildung 5.5: Pegel-Reaktions-Beziehungen im Tagesgang ... 50
8. Abbildung 5.6Belästigung durch Straßenverkehrslärm tagsüber, abends und insgesamt in Abhängigkeit vom Mittelungspegel des gleichen Bezugszeitraumes (2,5-dB-Pegelklasse, lauteste Fassade)... 52
9. Abbildung 5.7Belästigung durch Schienenverkehrslärm tagsüber, abends und insgesamt in Abhängigkeit vom Mittelungspegel des gleichen Bezugszeitraumes (2,5-dB-Pegelklasse, lauteste Fassade).. 52
10. Abbildung 5.8: Nennungen starker Belästigung im Tagesverlauf (Mehrfachnennungen möglich) ... 54
11. Abbildung 5.9: Belästigung durch Straßenverkehrslärm im Tagesverlauf .. 55
12. Abbildung 5.10: Belästigung durch Schienenverkehrslärm im Tagesverlauf .. 55
13. Abbildung 5.11: Lärmbelästigung durch Straßenverkehr (a) bzw. Schienenverkehr (b) in Abhängigkeit von Schallbelastung und Tagesverlauf (Pegelklassen der Breite 2,5 dB(A), 5-stufige verbale Belästigungsskala).. 56
15. Abbildung 5.13: Regressionen der Lärmbelästigung tagsüber und abends auf die Pegel auf Individualdatenniveau mit Konfidenzintervallen für die Reaktionsdifferenzen – getrennt für Schienen- und Straßenverkehrslärm .. 61
16. Abbildung 5.14: Vergleich unterschiedlicher Formulierungen der stündlichen Beeinträchtigung durch Lärm in der Hauptbefragung .. 63
17. Abbildung 5.15: Stündliche Belästigung durch Straßenverkehrslärm –mittels PDA erhoben
\(n_{\text{Dortmund}} = 26; n_{\text{Bo-Herner Str}} = 15; n_{\text{Düsseldorf}} = 28; n_{\text{Bo-Wasserstr}} = 20 \) 64

18. Abbildung 5.16: Stündliche Belästigung durch Schienenverkehrslärm –mittels PDA erhoben
\(n_{\text{Hamm}} = 27; n_{\text{Bönen}} = 15 \) .. 66

19. Abbildung 5.17: Lärmbelästigung durch Straßenverkehrslärm gruppiert nach Nennung der ausgeübten Aktivitäten im Tagesverlauf ... 68

20. Abbildung 5.18: Belästigung durch Schienenverkehrslärm bei unterschiedlichen Aktivitäten im Tagesverlauf ... 69

21. Abbildung 5.19: Stündliche Belästigungsangaben / Dortmund (Straßengebiet) 70

22. Abbildung 5.20: Stündliche Belästigungsangaben / Bochum, Herner Straße (Straßengebiet) 70

23. Abbildung 5.21: Stündliche Belästigungsangaben / Düsseldorf (Straßengebiet) 71

24. Abbildung 5.22: Stündliche Belästigungsangaben / Bochum, Wasserstraße (Straßengebiet) . 71

25. Abbildung 5.23: Stündliche Belästigungsangaben / Hamm (Schienengebiet) 72

26. Abbildung 5.24: Stündliche Belästigungsangaben / Bönen (Schienengebiet) 72

1. Tabelle 3-1: Geplantes Untersuchungsdesign (n=1200) .. 12

2. Tabelle 4-1: Realisiertes Untersuchungsdesign – (a) Hauptbefragung, (b) experience-
sampling-Studie ... 20

3. Tabelle 4-2: Inhalte des Fragebogens für die Hauptbefragung im Überblick 25

4. Tabelle 4-3: Inhalte der Erhebungsinstrumente der experience-sampling-Studie im Überblick .. 26

5. Tabelle 4-4: Ausschöpfung der Stichprobe und Gründe für Ausfälle ... 29

6. Tabelle 4-5: Verteilung der Teilnehmer/innen an der experience-sampling-Studie 29

7. Tabelle 4-6: Akzeptanz der PDA-Methode durch die Probanden.. 30

8. Tabelle 4-7: Untersuchungsablauf Einzelaufgabe 2131 ... 31

9. Tabelle 5-1: Soziodemografische Merkmale in der Gesamtstichprobe 32

10. Tabelle 5-2: Unterschiede in der Lärmbelästigung und Geräuschbelastung (\(L_{\text{Aeq,24}} \)) in verschiedenen soziodemografischen Gruppen – Ergebnisse der Signifikanzprüfung mit non-parametrische Rangtests (Kruskal-Wallis- bzw. Mann-Whitney-Test) ... 34

11. Tabelle 5-3: Lärmbelästigung und Geräuschbelastung (\(L_{\text{Aeq,24}} \)) in verschiedenen soziodemografischen Gruppen .. 35
12. Tabelle 5-4: Verteilung der Teilnehmer experience-sampling-Studie nach Alter und Geschlecht.. 37

13. Tabelle 5-5: Mittlere Differenz zw. dem Tagespegel (L_{Aeq, day} [6-18h]) und Abendpegel (L_{Aeq, evening} [18-22h]) in den ausgewählten Untersuchungsgebieten .. 43

14. Tabelle 5-6: Spearman-Korrelationen von durchschnittlicher Belästigung (erhoben durch Fragebogen im Interview bzw. PDA in der ergänzenden experience-sampling-Studie) und den Pegelmaßen L_{Aeq} bzw. L_1 für unterschiedliche Immissionsorte .. 44

15. Tabelle 5-7: Korrelationen von Belästigung und Aktivitätenstörungen durch Straßenverkehrslärm .. 45

16. Tabelle 5-8: Pegel-Reaktions-Korrelationen für Straßenverkehrslärm .. 49

17. Tabelle 5-9: Ergebnisse der Signifikanzprüfung nach dem Allgemeinen Linearen Modell zum Vergleich der Lärmbelästigung in Abhängigkeit von Tageszeit und Geräuschbelastung getrennt für die Lärmquellen Schiene und Straße .. 58

18. Tabelle 5-10: ΔL-Werte für die Belästigung durch Straßen- und Schienenverkehrslärm für unterschiedliche Tageszeiträume .. 60

19. Tabelle 5-11: Anzahl der Interviews je Fragebogenversion .. 62

20. Tabelle 5-12: Stündliche akustische Belastung der Probanden der experience-sampling-Studie .. 65

22. Tabelle 5-14: Profilkorrelation zwischen Lärmbelästigung im Tagesverlauf und Verlauf des stündlichen Mittelungsspegels L_{Aeq,1h} für die verschiedenen Erhebungsmethoden zur Lärmbelästigung (Interview vs. Erhebung mittels PDA) .. 74

23. Tabelle 5-15: Durchschnittliche stündliche Belästigungswerte erhoben im Interview und mittels PDA, allgemeine Lärmbelästigung (Interview) und Belästigung durch die Hauptlärmquelle (Interview) .. 74

24. Tabelle A-1: Mittlere Haushaltsgröße, durchschnittliche Anzahl Erwachsene und Kinder in den Gebieten .. 81

25. Tabelle A-2: Verteilung der Haushaltsgrößen in den Gebieten .. 81

26. Tabelle A-3: Anzahl der Kinder in den befragten Haushalten .. 82

27. Tabelle A-4: Verteilung von Geschlecht, Nationalität und Muttersprache in den untersuchten Gebieten .. 82

29. Tabelle A-6: Erwerbstätigkeit in den Gebieten ... 83
30. Tabelle A-7: Verteilung der Berufsgruppen in den Gebieten .. 84
31. Tabelle A-8: Verteilung der Schulabschlüsse in den Gebieten .. 84
32. Tabelle A-9: Verteilung der Berufsabschlüsse in den Gebieten .. 85
33. Tabelle A-10: Monatliches Nettolohn in Euro ... 85
34. Tabelle A-11: Durchschnittliche Belästigung und Gestörtheit durch die Hauptlärmquelle 86
35. Tabelle A-12: Häufigkeitsverteilung der Lärmbelästigung durch die Hauptlärmquelle in den sechs Gebieten.. 86
36. Tabelle A-13: Belästigung und Gestörtheit durch die Hauptlärmquelle im Lärmquellenvergleich.. 87
37. Tabelle A-14: Häufigkeitsverteilung der Lärmbelästigung durch Hauptlärmquelle 87
38. Tabelle A-15: Belästigung durch Verkehrslärm und weitere Lärmquellen im Vergleich...... 87
39. Tabelle A-16: Mittelwerte verschiedener Aktivitätenstörungen durch die dominante Lärmquelle ... 87
40. Tabelle A-17: Spearman-Korrelationen von Belästigung und Aktivitätenstörungen durch Straßenverkehrslärm... 88
41. Tabelle A-18: Mittelwerte der stündlichen Lärmbelästigung pro 5-dB-Pegelklasse Schiene (lauteste Fassade)... 89
42. Tabelle A-19: Mittelwerte der stündlichen Lärmbelästigung pro 5-dB-Pegelklasse Straße (lauteste Fassade)... 90
43. Tabelle A-20: Belästigung durch Straßenverkehrslärm: 24h, tagsüber, abends und nachts (Straßengebiete) .. 91
44. Tabelle A-21: Belästigung durch Schienenverkehrslärm: 24h, tagsüber, abends und nachts (Schienengebiete)... 92
45. Tabelle A-22: Pegel-Reaktions-Korrelationen für Straßen- und Schienenverkehrslärm 93
46. Tabelle A-23: Korrelation zwischen stundengebundener Belästigung und Verkehrsgeräuschbelastung... 94